Math 2135 - Assignment 7

Due October 19, 2018

- (1) Explain whether the following are true or false (give counter examples if possible):
 - (a) Every vector space is a subspace of itself.
 - (b) Each plane in \mathbb{R}^3 is a subspace.
 - (c) Let U be a subspace of a vector space V. Any linear combination of vectors of U is also in V.
 - (d) Let v_1, \ldots, v_n be in a vector space V. Then $\text{Span}(v_1, \ldots, v_n)$ is the smallest subspace of V containing v_1, \ldots, v_n .
- (2) Explain whether the following are true or false (give counter examples if possible):
 - (a) Vectors v_1, v_2, v_3 are linearly dependent if v_2 is a linear combination of v_1, v_3 .
 - (b) A subset $\{v\}$ of a vector space is linearly dependent iff v = 0.
 - (c) Two vectors in \mathbb{R}^3 cannot span all of \mathbb{R}^3 .
 - (d) There exist four vectors in \mathbb{R}^3 that are linearly independent.
- (3) Let v_1, \ldots, v_n be linearly independent in a vector space V. Show that no vector in $\text{Span}(v_1, \ldots, v_n)$ can be expressed by two different linear combinations.

Hint: Use contraposition. Assume some vector u can be written as linear combination with distinct lists of coefficients a_1, \ldots, a_n and b_1, \ldots, b_n . Show that v_1, \ldots, v_n is linearly dependent.

(4) Which of the following are bases of \mathbb{R}^3 ? Why or why not?

$$A = \begin{pmatrix} \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\3\\4 \end{bmatrix}), B = \begin{pmatrix} \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\3\\4 \end{bmatrix}, \begin{bmatrix} 0\\-1\\4 \end{bmatrix}), C = \begin{pmatrix} \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\3\\4 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix})$$

(5) The column space $\operatorname{Col} A$ of a matrix A is the span of the columns of A. Give a basis for $\operatorname{Nul} A$ and a basis for $\operatorname{Col} A$ over \mathbb{R} for

$$A = \begin{bmatrix} 0 & 2 & 0 & 3 \\ 1 & -4 & -1 & 0 \\ -2 & 6 & 2 & -3 \end{bmatrix}.$$

(6) Give 2 different bases for

$$U = \operatorname{Span}\left\{ \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 3\\-1\\0 \end{bmatrix}, \begin{bmatrix} -1\\3\\4 \end{bmatrix} \right\} \text{ over } \mathbb{R}.$$

- (7) Show that $\cos x, \cos 2x$ are linearly independent in the vector space of functions $\mathbb{R}^{\mathbb{R}}$ over \mathbb{R} .
- (8) Consider the vector space of functions $V = \text{Span}\{\cos x, 2\cos x, \cos 2x, 3\cos 2x\}$ over \mathbb{R} . Give a basis for V.