Math 2135 - Assignment 6

Due October 12, 2018

(1,2) Let V be a vector space over the field F with zero vector $\mathbf{0}$, let $v \in V$ and $c \in F$. Prove that

$$cv = \mathbf{0}$$
 iff $c = 0$ or $v = \mathbf{0}$.

Show the implication \Leftarrow as exercise (1) and \Rightarrow as exercise (2). State the axioms that you are using.

- (3) Let $V := \{f \colon \mathbb{R} \to \mathbb{R}\}$ be the vector space of all functions over \mathbb{R} .
 - (a) Is $\{f \colon \mathbb{R} \to \mathbb{R} \mid f(0) = 1\}$ a subspace of V?
 - (b) Is $\{f : \mathbb{R} \to \mathbb{R} \mid f(1) = 0\}$ a subspace of V?
 - (c) Is $\{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous}\}$ a subspace of V?
- (4) Let v_1, \ldots, v_n be vectors in a vector space V over some field F. Show that $U := \text{Span}\{v_1, \ldots, v_n\}$ is a subspace of V.
- (5) Let F be a field, and let $A \in F^{m \times n}$. Prove that the nullspace of A is a subspace of F^n .
- (6) Let V be a vector space over F, and let U_1, U_2 be subspaces of V. Show that $U_1 \cap U_2$ is a subspace of V.
- (7) Which of the following sets of vectors is linearly independent?

(a)
$$\begin{bmatrix} 0 \\ -1 \\ 4 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 1 \\ 3 \\ -2 \end{bmatrix}$
(b) $\begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -1 \\ 1 \\ 3 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 11 \\ 0 \end{bmatrix}$

(8) Are the functions $1, x, x^2$ in the vector space $V = \{f : \mathbb{R} \to \mathbb{R}\}$ linearly independent?