Math 2135 - Assignment 4

Due September 28, 2018

Solve all systems of linear equations by row reduction.

(1) Is b a linear combination of the vectors a_1, a_1, a_3 ?

$$a_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, a_2 = \begin{bmatrix} -2\\3\\-2 \end{bmatrix}, a_3 = \begin{bmatrix} -6\\7\\5 \end{bmatrix}, b = \begin{bmatrix} 11\\-5\\9 \end{bmatrix}$$

(2) For which values of a is b in the plane spanned by v_1 and v_2 ?

$$v_1 = \begin{bmatrix} 1\\0\\-2 \end{bmatrix}, v_2 = \begin{bmatrix} -2\\1\\7 \end{bmatrix}, b = \begin{bmatrix} a\\-3\\-5 \end{bmatrix}$$

- (3) Let A be a 2×3 matrix with 2 pivot columns.
 - (a) Does Ax = 0 have a nontrivial solution?
 - (b) Does Ax = b have a solution for every $b \in \mathbb{R}^2$?

Explain your answers.

(4) Let $A \in \mathbb{R}^{m \times n}$, $p \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$ such that Ap = b. Show that the set of solutions of Ax = b is

$$p + \operatorname{Nul} A = \{ p + v : v \in \operatorname{Nul} A \}.$$

Hint:

- (a) Show that if $v \in \text{Nul}A$, then p + v is a solution of Ax = b.
- (b) Show that if q is a solution for Ax = b, then q p is in NulA.
- (5) Are the following true or false? Explain your answers.
 - (a) The vector $3v_1$ is a linear combination of the vectors v_1, v_2 .
 - (b) For $v_1, v_2 \in \mathbb{R}^3$, Span $\{v_1, v_2\}$ is always a plane through the origin.
 - (c) For every matrix 3×2 matrix A there exists some vector b such that Ax = b is not consistent.
- (6) Explain why the following are not fields under the usual addition and multiplication. Give some axiom which is not satisfied:
 (a) Z
 (b) {x ∈ ℝ : x ≥ 0}
 (c) ℝ^{2×2}
- (7) Let $(F, +, \cdot)$ be a field. Using only the axioms, show that for each $a \in F, a \neq 0$, there exists a unique element $b \in F$ such that ab = 1.

This b is then called the multiplicative inverse of a and denoted by $b = a^{-1}$.

Hint: Let $a, b, c \in F$ such that ab = 1 and ac = 1. Show that then b = c. (8) For n > 1, recall that $\mathbb{Z}_n := \{[0], [1], \dots, [n-1]\}$ is the set of residue classes

modulo n. For $a, b \in \mathbb{Z}$, we have [a] + [b] := [a+b] and $[a] \cdots [b] := [ab]$. Give the operation tables for $+, \cdot$ on \mathbb{Z}_3 and on \mathbb{Z}_4 . Are $\mathbb{Z}_3, \mathbb{Z}_4$ fields?