Math 2130 Fall 2021 - Review for Midterm 2

Numbers refer to sections in Lay et al., Linear algebra and its applications.

1. Vector spaces.

(1) subspaces $(2.8,4.1)$
(2) spans of vectors and null spaces of matrices are subspaces (2.8, 4.2)

2. Basis of a vector space.

(1) dimension (4.5), Basis Theorem (cf. 2.3.1)
(2) Spanning Set Theorem to reduce a spanning set to a basis (2.8, 4.3), extend a linear independent set to a basis (4.5)
(3) basis and dimension for column space, row space, null space of a matrix $(2.8,4.3)$
(4) coordinates with respect to a basis $B(2.9,4.4)$
(5) change-of-coordinate matrix $P_{B \leftarrow C}$ for bases B and C (4.7)

3. Matrices.

(1) inverse matrices and their properties (2.2-2.3), Invertible Matrix Theorem characterizing invertible matrices by properties of columns, rows, rank, determinant
(2) computing the inverse matrix via row reduction (2.2)
(3) formula for inverse of 2×2-matrix (2.2)
(4) Rank Theorem relating the rank and null space
(5) determinant by cofactor expansion (3.1) and by row reduction (3.2)

4. Linear maps.

(1) a linear map is determined by its images on a basis
(2) matrix $T_{C \leftarrow B}$ of a linear map T with respect to bases B, C, obtaining the standard matrix $T_{E \leftarrow E}$ (for standard basis E) using change-of-coordinate matrices (1.9, 4.7)
(3) matrix for rotation, reflection in \mathbb{R}^{2} and \mathbb{R}^{3} (cf. 1.9)
(4) isomorphism between vector spaces, n-dimensional vector space is isomorphic to \mathbb{R}^{n} (4.4)

