Math 2130 - Practice Final

December 6-8, 2021
(1) Let $B=\left(\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 4\end{array}\right]\right)$.
(a) Why is B a basis of \mathbb{R}^{2} ?
(b) Give change of coordinates matrices $P_{E \leftarrow B}$ (for changing B-coordinates into coordinates w.r.t. the standard basis E) and $P_{B \leftarrow E}$.
(c) Compute the coordinates $[x]_{B}$ for $x=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.

Solution:

(a) B is a basis since it contains 2 linear independent vectors of \mathbb{R}^{2}
(b)

$$
P_{E \leftarrow B}=\left[b_{1}, b_{2}\right]=\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right] \text { and } P_{B \leftarrow E}=\left[b_{1}, b_{2}\right]^{-1}=\frac{1}{4-6}\left[\begin{array}{cc}
4 & -3 \\
-2 & 1
\end{array}\right]
$$

(c)

$$
[x]_{B}=P_{B \leftarrow E} \cdot x=\frac{1}{2}\left[\begin{array}{cc}
-4 & 3 \\
2 & -1
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right]
$$

(2) Let $B=\left(b_{1}, b_{2}\right)$ as in the previous problem. Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be linear such that $\left[h\left(b_{1}\right)\right]_{E}=\left[\begin{array}{c}-1 \\ 1\end{array}\right],\left[h\left(b_{2}\right)\right]_{E}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
(a) Give the standard matrix $T_{E \leftarrow E}$ of h w.r.t. the standard basis.
(b) Compute $h\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$.

Solution:

(a) Recall that the matrix of h w.r.t B and E is

$$
T_{E \leftarrow B}=\left[\left[h\left(b_{1}\right)\right]_{E}\left[h\left(b_{2}\right)\right]_{E}\right]=\left[\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right]
$$

We only have to change the first basis from B to E via the change of basis matrix $T_{B \leftarrow E}$,

$$
T_{E \leftarrow E}=T_{E \leftarrow B} \cdot P_{B \leftarrow E}=\left[\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right] \cdot \frac{1}{2}\left[\begin{array}{cc}
-4 & 3 \\
2 & -1
\end{array}\right]=\left[\begin{array}{cc}
2 & -3 / 2 \\
-1 & 1
\end{array}\right]
$$

(b)

$$
h\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=T_{E \leftarrow E} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\ldots
$$

(3) Let

$$
A=\left[\begin{array}{ccc}
1 & -2 & 3 \\
-2 & 0 & 1 \\
3 & -2 & 2
\end{array}\right]
$$

(a) Is the mapping $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, x \mapsto A x$, injective, surjective, bijective?
(b) Give bases for null space, row space, column space of A.

Solution:

h is injective iff $\operatorname{Nul} A$ is trivial.
First find a row echelon form of A :

$$
A \sim\left[\begin{array}{ccc}
1 & -2 & 3 \\
0 & -4 & 7 \\
0 & 4 & -7
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -2 & 3 \\
0 & -4 & 7 \\
0 & 0 & 0
\end{array}\right]
$$

For $A \cdot x=0$ we now see that x_{3} is a free variable. Set $x_{3}=t$ a parameter in \mathbb{R}. Then $x_{2}=7 / 4 t$ and $x_{1}=1 / 2 t$. Hence

$$
\operatorname{Nul} A=\operatorname{Span}\left(\left[\begin{array}{c}
1 / 2 \\
7 / 4 \\
1
\end{array}\right]\right) \text { has basis }\left(\left[\begin{array}{l}
2 \\
7 \\
4
\end{array}\right]\right) .
$$

In particular $\operatorname{Nul} A$ is not 0 and h is not injective.
Further h is surjective iff $\operatorname{Col} A=\mathbb{R}^{3}$ (the codomain of h). Since A has only 2 pivots, $\operatorname{dim} \operatorname{Col} A=2$ and h is not surjective. For a basis of $\operatorname{Col} A$ pick the pivot columns of A, that is

$$
\operatorname{Col} A \text { has basis }\left(\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
2
\end{array}\right]\right) .
$$

For a basis of Row A pick the non zero rows of an echelon form of A, that is
Row A has basis $((1,-2,3),(0,-4,7))$.
Note that
dim Row $A=\operatorname{dim} \operatorname{Col} A=$ number of columns of $A-\operatorname{dim} \operatorname{Nul} A$.
(4) Let A be the standard matrix for the rotation r of \mathbb{R}^{2} by angle φ counterclockwise around the origin. What are the eigenvalues and eigenvectors of A ? Can A be diagonalized over the reals?

Solution:

Version 1: The standard matrix of r is

$$
A=\left[\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right]
$$

Its characteristic polynomial is

$$
\operatorname{det}(A-\lambda I)=\lambda^{2}-2 \lambda \cos \varphi+(\cos \varphi)^{2}+(\sin \varphi)^{2}=\lambda^{2}-2 \lambda \cos \varphi+1
$$

By the quadratic formula its roots are

$$
\lambda_{1,2}=\cos \varphi \pm \sqrt{(\cos \varphi)^{2}-1}=\cos \varphi \pm i \sin \varphi
$$

Hence there are no real eigenvalues unless $\sin \varphi=0$, that is, $\varphi=0$ or π. In the first case $A=I$ and has eigenvalue 1 (multiplicitiy 2) with eigenspace \mathbb{R}^{2}. In the second case $A=-I$ and has eigenvalue -1 (multiplicitiy 2) with eigenspace \mathbb{R}^{2}.

If $\varphi \neq 0, \pi$, then A is not diagonalizable over \mathbb{R} since it does not have any real eigenvalues.

Version 2 (with less computation): Rotation scales a vector $v \in \mathbb{R}^{2}$ only for $\varphi=0$ in which case $r(v)=v$ or for $\varphi=\pi$ in which case $r(v)=-v$. Hence $A=I$ or $A=-I$ as above.
(5) Diagonalize A if possible. Also compute $\operatorname{det} A$. Is A invertible?

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & 0 & 3 \\
0 & 0 & -2
\end{array}\right]
$$

Solution:

Characteristic polynomial: Expand the determinant by row 3 to get

$$
\operatorname{det}(A-\lambda I)=(-2-\lambda) \operatorname{det}\left[\begin{array}{cc}
1-\lambda & 2 \\
3 & -\lambda
\end{array}\right]=(-2-\lambda)\left(\lambda^{2}-\lambda-6\right)
$$

Eigenvalues: We see one root $\lambda_{1}=-2$ of the characteristic polynomial and compute the others with the quadratic formula:

$$
\lambda_{2,3}=1 / 2 \pm \sqrt{1 / 4+6}=1 / 2 \pm 5 / 2
$$

Hence $\lambda_{2}=-2, \lambda_{3}=3$.
Eigenvectors: For $\operatorname{Nul}(A-(-2) I)$ consider

$$
A+2 I=\left[\begin{array}{lll}
3 & 2 & 3 \\
3 & 2 & 3 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
3 & 2 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Hence $\operatorname{Nul}(A-(-2) I)$ has basis vector $v_{1}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{c}-2 \\ 3 \\ 0\end{array}\right]$. For $\operatorname{Nul}(A-3 I)$ consider

$$
A-3 I=\left[\begin{array}{ccc}
-2 & 2 & 3 \\
3 & -3 & 3 \\
0 & 0 & -5
\end{array}\right] \sim\left[\begin{array}{ccc}
-2 & 2 & 3 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Hence $\operatorname{Nul}(A-3 I)$ has basis vector $v_{3}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.
Diagonalization of A : Since we have found 3 linear independent eigenvectors v_{1}, v_{2}, v_{3}, A is diagonalizable. For

$$
P=\left[v_{1} v_{2} v_{3}\right], A=P \operatorname{diag}(-2,-2,3) P^{-1}
$$

$\operatorname{det} A$ can be computed with the Rule of Sarrus, row reduction, expansion by row 3 or as the product of eigenvalues (see HW 12.4):

$$
\operatorname{det} A=\lambda_{1} \lambda_{2} \lambda_{3}=12
$$

A has an inverse since $\operatorname{det} A \neq 0$.
(6) Compute the inverse if possible:

$$
A=\left[\begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array}\right], \quad B=\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 0 & -1 \\
1 & -1 & 0
\end{array}\right]
$$

Solution:

$$
A^{-1}=\frac{1}{4-4}\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]
$$

does not exist since $\operatorname{det} A=0$.
Row reduce $\left[B, I_{3}\right]$:

$$
\begin{gathered}
{\left[\begin{array}{cccccc}
1 & 2 & 4 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 1 & 0 \\
1 & -1 & 0 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{cccccc}
1 & 2 & 4 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 & 1 & 0 \\
0 & -3 & 4 & -1 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{ccccccc}
1 & 2 & 4 & 0 & 0 & 1 \\
0 & 1 & -4 / 3 & 1 / 3 & 0 & -1 / 3 \\
0 & 0 & 1 & 0 & -1 & 0
\end{array}\right]} \\
\end{gathered}
$$

So

$$
B^{-1}=\left[\begin{array}{ccc}
1 / 3 & 4 / 3 & 2 / 3 \\
1 / 3 & 4 / 3 & -1 / 3 \\
0 & -1 & 0
\end{array}\right]
$$

(7) Let $h: V \rightarrow W$ be a linear map, let $v_{1}, \ldots, v_{k} \in V$ such that $h\left(v_{1}\right), \ldots, h\left(v_{k}\right)$ are linearly independent. Show that v_{1}, \ldots, v_{k} are linearly independent.

Solution:

Consider a linear combination

$$
c_{1} v_{1}+\cdots+c_{k} v_{k}=0
$$

for scalars c_{1}, \ldots, c_{k}. We want to show that all c_{i} are 0 .
Apply h to the equation above,

$$
h\left(c_{1} v_{1}+\cdots+c_{k} v_{k}\right)=h(0)
$$

By linearity of h this yields

$$
c_{1} h\left(v_{1}\right)+\cdots+c_{k} h\left(v_{k}\right)=0
$$

Since $h\left(v_{1}\right), \ldots, h\left(v_{k}\right)$ are linearly independent, this implies $c_{1}=\cdots=c_{k}=0$. Hence the original vectors v_{1}, \ldots, v_{k} are linearly independent.

