Math 2130 - Practice Final

December 6-8, 2021
(1) Let $B=\left(\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 4\end{array}\right]\right)$.
(a) Why is B a basis of \mathbb{R}^{2} ?
(b) Give change of coordinates matrices $P_{E \leftarrow B}$ (for changing B-coordinates into coordinates w.r.t. the standard basis E) and $P_{B \leftarrow E}$.
(c) Compute the coordinates $[x]_{B}$ for $x=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
(2) Let $B=\left(b_{1}, b_{2}\right)$ as in the previous problem. Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be linear such that $\left[h\left(b_{1}\right)\right]_{E}=\left[\begin{array}{c}-1 \\ 1\end{array}\right],\left[h\left(b_{2}\right)\right]_{E}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
(a) Give the standard matrix $T_{E \leftarrow E}$ of h w.r.t. the standard basis.
(b) Compute $h\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$.
(3) Let

$$
A=\left[\begin{array}{ccc}
1 & -2 & 3 \\
-2 & 0 & 1 \\
3 & -2 & 2
\end{array}\right]
$$

(a) Is the mapping $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, x \mapsto A x$, injective, surjective, bijective?
(b) Give bases for null space, row space, column space of A.
(4) Let A be the standard matrix for the rotation r of \mathbb{R}^{2} by angle φ counterclockwise around the origin. What are the eigenvalues and eigenvectors of A ? Can A be diagonalized over the reals?
(5) Diagonalize A if possible. Also compute $\operatorname{det} A$. Is A invertible?

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & 0 & 3 \\
0 & 0 & -2
\end{array}\right]
$$

(6) Compute the inverse if possible:

$$
A=\left[\begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array}\right], \quad B=\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 0 & -1 \\
1 & -1 & 0
\end{array}\right]
$$

(7) Let $h: V \rightarrow W$ be a linear map, let $v_{1}, \ldots, v_{k} \in V$ such that $h\left(v_{1}\right), \ldots, h\left(v_{k}\right)$ are linearly independent. Show that v_{1}, \ldots, v_{k} are linearly independent.

