Math 2130-Assignment 13

Due Dec 3, 2021
(1) (a) Let W be the subspace of \mathbb{R}^{3} with orthonormal basis $B=\left(\frac{1}{3}\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right], \frac{1}{\sqrt{5}}\left[\begin{array}{l}\frac{1}{2} \\ 0\end{array}\right]\right)$. Compute the coordinates $[x]_{B}$ for $x=\left[\begin{array}{l}7 \\ 4 \\ 4\end{array}\right]$ in W using dot products.
(b) Give a basis for W^{\perp}.
(c) Find the closest point to $y=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ in W. What is the distance from y to W ?
(2) True or false. Explain your answers.
(a) Every orthogonal set is also orthonormal.
(b) Not every orthonormal set in \mathbb{R}^{n} is linearly independent.
(c) For each x and each subspace W, the vector $x-\operatorname{proj}_{W}(x)$ is orthogonal to W.
(3) Let W be a subset of \mathbb{R}^{n}. Show that its orthogonal complement

$$
W^{\perp}:=\left\{x \in \mathbb{R}^{n} \mid x \text { is orthogonal to all } w \in W\right\}
$$

is a subspace of \mathbb{R}^{n}.
(4) Let W be a subspace of \mathbb{R}^{n}. Show that
(a) $W \cap W^{\perp}=0$
(b) $\operatorname{dim} W+\operatorname{dim} W^{\perp}=n$

Hint: Let w_{1}, \ldots, w_{k} be a basis of W. Use that $x \in W^{\perp}$ iff x is orthogonal to w_{1}, \ldots, w_{k}.
(5) Use the Gram-Schmidt algorithm to find orthonormal bases for the following subspaces:

$$
U=\operatorname{Span}\left(\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
5 \\
6 \\
-7
\end{array}\right]\right), \quad W=\operatorname{Span}\left(\left[\begin{array}{c}
2 \\
-1 \\
-2
\end{array}\right],\left[\begin{array}{c}
-4 \\
2 \\
4
\end{array}\right]\right)
$$

(6) Use the Gram-Schmidt process to transform the vectors in an orthonormal set.

$$
x_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right], x_{2}=\left[\begin{array}{c}
-1 \\
\frac{1}{3} \\
-3
\end{array}\right], x_{3}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

(7) Find the least squares solutions of $A x=b$.
(a) $A=\left[\begin{array}{cc}1 & 3 \\ 1 & -1 \\ 1 & 1\end{array}\right], b=\left[\begin{array}{c}5 \\ 1 \\ 0\end{array}\right]$
(b) $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right], b=\left[\begin{array}{c}-1 \\ 2 \\ -3 \\ 4\end{array}\right]$
(8) True or false for $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. Explain your answers.
(a) A least squares solution of $A x=b$ is an \hat{x} such that $A \hat{x}$ is as close as possible to b.
(b) A least squares solution of $A x=b$ is an \hat{x} such that $A \hat{x}=\hat{b}$ for \hat{b} the orthogonal projection of b onto $\operatorname{Col} A$.
(c) The point in $\operatorname{Col} A$ closest to b is a least squares solution of $A x=b$.
(d) If $A x=b$ is consistent, then every solution x is a least squares solution.

