Math 2130 - Assignment 13

Due Dec 3, 2021

(1) (a) Let W be the subspace of \mathbb{R}^3 with orthonormal basis $B = \left(\frac{1}{3} \begin{bmatrix} 2\\-1\\2 \end{bmatrix}, \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\2\\0 \end{bmatrix}\right)$. Compute the coordinates $[x]_B$ for $x = \begin{bmatrix} 7\\4\\4 \end{bmatrix}$ in W using dot products.

(b) Give a basis for W^{\perp} .

(c) Find the closest point to $y = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix}$ in W. What is the distance from y to W? (2) True or false. Explain your answers.

- (a) Every orthogonal set is also orthonormal.
 - (b) Not every orthonormal set in \mathbb{R}^n is linearly independent.
 - (c) For each x and each subspace W, the vector $x \operatorname{proj}_W(x)$ is orthogonal to W.
- (3) Let W be a subset of \mathbb{R}^n . Show that its orthogonal complement

$$W^{\perp} := \{x \in \mathbb{R}^n \mid x \text{ is orthogonal to all } w \in W\}$$

is a subspace of \mathbb{R}^n .

- (4) Let W be a subspace of \mathbb{R}^n . Show that
 - (a) $W \cap W^{\perp} = 0$
 - (b) dim W + dim $W^{\perp} = n$ Hint: Let w_1, \ldots, w_k be a basis of W. Use that $x \in W^{\perp}$ iff x is orthogonal to w_1, \ldots, w_k .
- (5) Use the Gram-Schmidt algorithm to find orthonormal bases for the following subspaces:

$$U = \operatorname{Span}\left(\begin{bmatrix} 0\\2\\1 \end{bmatrix}, \begin{bmatrix} 5\\6\\-7 \end{bmatrix}\right), \qquad \qquad W = \operatorname{Span}\left(\begin{bmatrix} 2\\-1\\-2 \end{bmatrix}, \begin{bmatrix} -4\\2\\4 \end{bmatrix}\right)$$

(6) Use the Gram-Schmidt process to transform the vectors in an orthonormal set.

$$x_1 = \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix}, x_2 = \begin{bmatrix} -1\\1\\3\\-3 \end{bmatrix}, x_3 = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$$

(7) Find the least squares solutions of Ax = b.

(a)
$$A = \begin{bmatrix} 1 & 3 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} -1 \\ 2 \\ -3 \\ 4 \end{bmatrix}$

(8) True or false for $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Explain your answers.

- (a) A least squares solution of Ax = b is an \hat{x} such that $A\hat{x}$ is as close as possible to b.
- (b) A least squares solution of Ax = b is an \hat{x} such that $A\hat{x} = \hat{b}$ for \hat{b} the orthogonal projection of b onto Col A.
- (c) The point in Col A closest to b is a least squares solution of Ax = b.
- (d) If Ax = b is consistent, then every solution x is a least squares solution.