Math 2130-Assignment 12

Due Nov 19, 2021
(1) Are the matrices A, B, C, D in (3), (4), (5) of assignment 11 diagonalizable? How? Solution:
A is not diagonalizable because its eigenvalue -3 has multiplicity 2 but the corresponding eigenspace only dimension 1 .
B is diagonalizable because it has 3 distinct eigenvalues, so

$$
B=P\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 3
\end{array}\right] \quad P^{-1} \text { for } P=\left[\begin{array}{lll}
2 & 0 & 0 \\
1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]
$$

C is diagonalizable because it has 2 distinct eigenvalues, so

$$
C=P\left[\begin{array}{cc}
1+\sqrt{6} & 0 \\
0 & 1-\sqrt{6}
\end{array}\right] P^{-1} \text { for } P=\left[\begin{array}{cc}
2 & -2 \\
\sqrt{6} & \sqrt{6}
\end{array}\right]
$$

D is not diagonalizable because its eigenvalue -3 has multiplicity 2 but the corresponding eigenspace only dimension 1 .
(2) Let A be an $n \times n$-matrix. Are the following true or false? Explain why:
(a) If A has n eigenvectors, then A is diagonalizable.
(b) If a 4×4-matrix A has two eigenvalues with eigenspaces of dimension 3 and 1 , respectively, then A is diagonalizable.
(c) A is diagonalizable iff A has n eigenvalues (counting multiplicities).
(d) If \mathbb{R}^{n} has a basis of eigenvectors of A, then A is diagonalizable.
(e) Every triangular matrix is diagonalizable.

Solution:
(a) False. You need n linearly independent eigenvectors.
(b) True.
(c) False. See for example A in problem 92 .
(d) True. A basis of \mathbb{R}^{n} of eigenvectors consists of n linearly independent eigenvectors.
(e) False. See example A in the previous problem.
(3) Let A be the standard matrix for the reflection t of \mathbb{R}^{2} on some line g throught the origin. What are the eigenvalues and eigenvectors of A ? Can A be diagonalized? Hint: Consider what a reflection does to specific vectors.

Solution:

Let v_{1} be a non-zero vector on the line g, that is, v_{1} spans g. Then $t\left(v_{1}\right)=A v_{1}=v_{1}$. Hence v_{1} is an eigenvector for A (equivalently for t) with eigenvalue 1 .

Let v_{w} be a non-zero vector orhogonal to g. Then $t\left(v_{2}\right)=A v_{2}=-v_{2}$. Hence v_{2} is an eigenvector for A (equivalently for t) with eigenvalue -1 .

Since A is a 2×2-matrix and has at most 2 eigenvalues we found all of them. Since v_{1} and v_{2} are non-zero and orthogonal, they form a basis $B=\left(v_{1}, v_{2}\right)$ of \mathbb{R}^{2}. For P the matrix with columns v_{1}, v_{2}, we then have

$$
A=P \cdot\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \cdot P^{-1}
$$

Note that P is the change of coordinates matrix $[i d]_{B, E}$ and $[t]_{B, B}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. So that's exactly how we computed $[t]_{E, E}=A$ earlier.
(4) Consider a population of owls feeding on a population of squirrels. In month k, let o_{k} denote the number of owls and s_{k} the number of squirrels. Assume that the populations change every month as follows:

$$
\begin{aligned}
o_{k+1} & =0.3 o_{k}+0.4 s_{k} \\
s_{k+1} & =-0.4 o_{k}+1.3 s_{k}
\end{aligned}
$$

That is, if there would be no squirrels to hunt, only 30% of the owls would survive to the next month; if there were no owls that hunted squirrels, then the squirrel population would grow by factor 1.3 every month.

Let $x_{k}=\left[\begin{array}{l}o_{k} \\ s_{k}\end{array}\right]$. Express the population change from x_{k} to x_{k+1} using a matrix A. Diagonalize A.

Solution:

$$
x_{k+1}=\underbrace{\left[\begin{array}{cc}
0.3 & 0.4 \\
-0.4 & 1.3
\end{array}\right]}_{A} x_{k}
$$

We diagonalize A. The characteristic equation is

$$
0=\operatorname{det}(A-\lambda I)=(0.3-\lambda)(1.3-\lambda)+0.4^{2}=\lambda^{2}-1.6 \lambda+0.55
$$

the eigenvalues are $\lambda=\frac{1}{2}\left(1.6 \pm \sqrt{1.6^{2}-4 \cdot 0.55}\right)=0.8 \pm 0.3 \in\{0.5,1.1\}$. We compute a basis for each eigenspace.

$$
\begin{aligned}
& \lambda=0.5: \quad \operatorname{Nul}(A-0.5 I)=\operatorname{Nul}\left[\begin{array}{ll}
-0.2 & 0.4 \\
-0.4 & 0.8
\end{array}\right]=\operatorname{Nul}\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]=\operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\} \\
& \lambda=1.1: \quad \operatorname{Nul}(A-1.1 I)=\operatorname{Nul}\left[\begin{array}{ll}
-0.8 & 0.4 \\
-0.4 & 0.2
\end{array}\right]=\operatorname{Nul}\left[\begin{array}{cc}
1 & -1 / 2 \\
0 & 0
\end{array}\right]=\operatorname{Span}\left\{\left[\begin{array}{c}
1 / 2 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

We write the eigenvectors in a matrix P and compute P^{-1} :

$$
P=\left[\begin{array}{cc}
2 & 1 / 2 \\
1 & 1
\end{array}\right], \quad P^{-1}=\frac{1}{3 / 2}\left[\begin{array}{cc}
1 & -1 / 2 \\
-1 & 2
\end{array}\right]=\frac{1}{3}\left[\begin{array}{cc}
2 & -1 \\
-2 & 4
\end{array}\right]
$$

We obtain a diagonalization

$$
A=\underbrace{\left[\begin{array}{cc}
2 & 1 / 2 \\
1 & 1
\end{array}\right]}_{P} \underbrace{\left[\begin{array}{cc}
0.5 & 0 \\
0 & 1.1
\end{array}\right]}_{D} \underbrace{\frac{1}{3}\left[\begin{array}{cc}
2 & -1 \\
-2 & 4
\end{array}\right]}_{P^{-1}}
$$

(5) Continue the previous problem: Let the starting population be $x_{1}=\left[\begin{array}{c}o_{1} \\ s_{1}\end{array}\right]=\left[\begin{array}{c}20 \\ 100\end{array}\right]$.
(a) Give an explicit formula for the populations in month $k+1$.
(b) Are the populations growing or decreasing over time? By which factor?
(c) What is ratio of owls to squirrels after 12 months? After 24 months? Can you explain why?

Solution:

(a) (2 points)

$$
\begin{aligned}
x_{k+1}=A^{k} x_{1}=P D^{k} P^{-1} x_{1} & =\left[\begin{array}{cc}
2 & 1 / 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
0.5^{k} & 0 \\
0 & 1.1^{k}
\end{array}\right] \frac{1}{3}\left[\begin{array}{cc}
2 & -1 \\
-2 & 4
\end{array}\right]\left[\begin{array}{c}
20 \\
100
\end{array}\right] \\
& =\left[\begin{array}{c}
60 \cdot 1.1^{k}-40 \cdot 0.5^{k} \\
120 \cdot 1.1^{k}-20 \cdot 0.5^{k}
\end{array}\right]
\end{aligned}
$$

(b) (2 points) Both populations are growing. For large k, the term 0.5^{k} can be neglected (e.g. for $k \geq 12$ we have $1.1^{k} \geq 3.138$ and $0.5^{k} \leq 0.00025$). We can approximate the populations by

$$
x_{k+1} \approx\left[\begin{array}{c}
60 \cdot 1.1^{k} \\
120 \cdot 1.1^{k}
\end{array}\right]=1.1^{k}\left[\begin{array}{c}
60 \\
120
\end{array}\right] \quad \text { for large } k
$$

After a large number of months, both populations grow by a factor of 1.1 every month.
(c) (1 point) The populations are $x_{13}=\left[\begin{array}{l}188.3 \\ 376.6\end{array}\right]$ after 12 months and $x_{25}=\left[\begin{array}{c}591.0 \\ 1182.0\end{array}\right]$ after 24 months. After a large number of months, the ratio of owls to squirrels is always about $1: 2$ by the approximation formula for x_{k+1}.
(6) (a) Give 3 vectors of length 1 in \mathbb{R}^{3} that are orthogonal to $u=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$.
(b) Which of the following sets are orthogonal? Orthonormal?

$$
A=\left\{\left[\begin{array}{c}
0.6 \\
0.8
\end{array}\right],\left[\begin{array}{c}
0.8 \\
-0.6
\end{array}\right]\right\}, \quad B=\left\{\frac{1}{3}\left[\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right], \frac{1}{\sqrt{18}}\left[\begin{array}{c}
4 \\
1 \\
-1
\end{array}\right]\right\}
$$

Solution:

(a) Switch any 2 components of u, change one sign and set the remaining component 0 to get orthogonal vectors, e.g., $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]$.
(b) A is orthonormal since its vectors are pairwise orthogonal and all have length 1. Same for B.

