Math 2135 - Assignment 11

Due November 12, 2021

(1) Let $A \in F^{n \times n}$. Are the following true or false? Explain why:

(a) If two rows or columns of A are identical, then $\det A = 0$.

(b) For $c \in F$, det(cA) = c det A.

(c) If A is invertible, then $\det A^{-1} = \frac{1}{\det A}$.

(d) A is invertible iff 0 is not an eigenvalue of A.

Solution:

(a) True. If two rows or columns of A are identical, then A is not invertible and $\det A = 0$.

(b) False. $det(cA) = c^n det A$ since in cA every row is multiplied by c.

(c) True. Assume A is invertible. Then det $A \cdot A^{-1} = \det A \cdot \det A^{-1}$ by a Theorem from class. Since det $A \cdot A^{-1} = \det I = 1$, the statement follows.

(d) True. By the Invertible Matrix Theorem A is invertible iff Nul A is trivial. The latter means that $Nul(A - 0I) = \{0\}$, i.e. 0 is not an eigenvalue of A.

(2) Eigenvalues, -vectors and -spaces can be be defined for linear maps just as for matrices.

Let $h: V \to W$ be a linear map for vector spaces V, W over F. Show that the eigenspace for $\lambda \in F$,

$$E_{h,\lambda} := \{ x \in V : h(x) = \lambda x \},\$$

is a subspace of V.

Solution:

We have to show that $E_{h,\lambda}$ contains the 0-vector, is closed under addition and scalar multiples. Using the linearity of h we get:

 $0 \in E_{h,\lambda}$ since $h(0) = 0 = \lambda 0$

If $u, v \in E_{h,\lambda}$, then $h(u+v) = h(u) + h(v) = \lambda u + \lambda v = \lambda(u+v)$ and $u+v \in E_{h,\lambda}$. If $v \in E_{h,\lambda}$ and $c \in F$, then $h(cv) = ch(v) = c\lambda v = \lambda cv$ and $cv \in E_{h,\lambda}$.

(3) Give all eigenvalues and bases for eigenspaces of the following matrices. Do you need the characteristic polynomials?

$$A = \begin{bmatrix} -3 & 1\\ 0 & -3 \end{bmatrix} \qquad \qquad B = \begin{bmatrix} 2 & 0 & 0\\ 1 & 0 & 0\\ -1 & 0 & 3 \end{bmatrix}$$

Solution:

Since A, B are triangular matrices, their eigenvalues are just their diagonal elements.

- (a) A has eigenvalue -3 with multiplicity 2: Nul(A (-3)I) has basis $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
- (b) *B* has eigenvalues 2, 0, 3: $\operatorname{Nul}(A - 2I)$ has basis $\left(\begin{bmatrix} 2\\1\\2 \end{bmatrix}\right)$. $\operatorname{Nul}(A - 0I)$ has basis $\left(\begin{bmatrix} 0\\1\\0 \end{bmatrix}\right)$. $\operatorname{Nul}(A - 3I)$ has basis $\left(\begin{bmatrix} 0\\0\\1 \end{bmatrix}\right)$.

(4) Give the characteristic polynomial, all eigenvalues and bases for eigenspaces for C = $\begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$

Šolution:

Characteristic polynomial:

$$det(C - \lambda I) = (1 - \lambda)(1 - \lambda) - 2 \cdot 3$$
$$= \lambda^2 - 2\lambda - 5$$

Eigenvalues are the roots of the characteristic polynomial. Use the quadratic formula

$$\lambda_{1,2} = 1 \pm \sqrt{1+5}$$
$$= 1 \pm \sqrt{6}$$

Eigenvector for $\lambda = 1 + \sqrt{6}$:

$$C - \lambda I = \begin{bmatrix} -\sqrt{6} & 2\\ 3 & -\sqrt{6} \end{bmatrix} \sim \begin{bmatrix} -\sqrt{6} & 2\\ 0 & 0 \end{bmatrix}$$

where we multiplied row 1 by $\frac{3}{\sqrt{6}}$ and added to row 2.

So the eigenspace for $\lambda = 1 + \sqrt{6}$ has basis $\begin{pmatrix} 2 \\ \sqrt{6} \end{pmatrix}$.

Eigenvector for $\lambda = 1 - \sqrt{6}$:

$$C - \lambda I = \begin{bmatrix} \sqrt{6} & 2\\ 3 & \sqrt{6} \end{bmatrix} \sim \begin{bmatrix} \sqrt{6} & 2\\ 0 & 0 \end{bmatrix}$$

where we multiplied row 1 by $\frac{3}{\sqrt{6}}$ and subtracted from row 2. So the eigenspace for $\lambda = 1 - \sqrt{6}$ has basis $\begin{pmatrix} -2 \\ \sqrt{6} \end{pmatrix}$.

(5) Compute eigenvalues and eigenvectors for $D = \begin{bmatrix} -1 & 4 & 1 \\ 6 & 9 & 2 \\ 0 & 0 & -3 \end{bmatrix}$.

Solution:

Characteristic polynomial:

$$\det(D - \lambda I) = (-3 - \lambda) \cdot \det \begin{bmatrix} -1 - \lambda & 4 \\ 6 & 9 - \lambda \end{bmatrix}$$
$$(-3 - \lambda)[(-1 - \lambda)(9 - \lambda) - 24]$$
$$(-3 - \lambda)[\lambda^2 - 8\lambda - 33]$$

Eigenvalues are $\lambda_1 = -3$ and the roots of $\lambda^2 - 8\lambda - 33$. The quadratic formula yields $\lambda_{2,3} = 4 \pm \sqrt{4^2 + 33}$

So $\lambda_2 = -3$ and $\lambda_3 = 11$.

The eigenspace for $\lambda = -3$ has basis $\begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$.

 $\mathbf{2}$

The eigenspace for $\lambda = 11$ has basis $\left(\begin{bmatrix} 1\\ 0 \end{bmatrix} \right)$.

- (6) Are the matrices A, B, C, D in (3), (4), (5) diagonalizable? How?
- (7) Let A be an $n \times n$ -matrix. Are the following true or false? Explain why:
 - (a) If A has n eigenvectors, then A is diagonalizable.
 - (b) If a 4×4 -matrix A has two eigenvalues with eigenspaces of dimension 3 and 1, respectively, then A is diagonalizable.
 - (c) A is diagonalizable iff A has n eigenvalues (counting multiplicities).
 - (d) If \mathbb{R}^n has a basis of eigenvectors of A, then A is diagonalizable.
- (8) Let $A \in \mathbb{R}^{n \times n}$ with *n* eigenvalues $\lambda_1, \ldots, \lambda_n$ (repeated according to their multiplicities). Show that

$$\det A = \lambda_1 \cdot \lambda_2 \cdots \lambda_n$$

Hint: Consider the characteristic polynomial $det(A - \lambda I) = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda)$. Solution:

Since $\lambda_1, \ldots, \lambda_n$ are the roots of the characteristic polynomial, the characteristic polynomial can be factored as

$$\det(A - \lambda I) = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda).$$

Note that the signs are correct because on both sides of the equation the coefficient of λ^n is $(-1)^n$.

By plugging in $\lambda = 0$ we get

$$\det A = \lambda_1 \cdot \lambda_2 \cdots \lambda_n.$$