Math 2135-Assignment 11

Due November 12, 2021
(1) Let $A \in F^{n \times n}$. Are the following true or false? Explain why:
(a) If two rows or columns of A are identical, then $\operatorname{det} A=0$.
(b) For $c \in F, \operatorname{det}(c A)=c \operatorname{det} A$.
(c) If A is invertible, then $\operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A}$.
(d) A is invertible iff 0 is not an eigenvalue of A.

Solution:

(a) True. If two rows or columns of A are identical, then A is not invertible and $\operatorname{det} A=0$.
(b) False. $\operatorname{det}(c A)=c^{n} \operatorname{det} A$ since in $c A$ every row is multiplied by c.
(c) True. Assume A is invertible. Then $\operatorname{det} A \cdot A^{-1}=\operatorname{det} A \cdot \operatorname{det} A^{-1}$ by a Theorem from class. Since $\operatorname{det} A \cdot A^{-1}=\operatorname{det} I=1$, the statement follows.
(d) True. By the Invertible Matrix Theorem A is invertible iff $\operatorname{Nul} A$ is trivial. The latter means that $\operatorname{Nul}(A-0 I)=\{0\}$, i.e. 0 is not an eigenvalue of A.
(2) Eigenvalues, -vectors and -spaces can be be defined for linear maps just as for matrices.

Let $h: V \rightarrow W$ be a linear map for vector spaces V, W over F. Show that the eigenspace for $\lambda \in F$,

$$
E_{h, \lambda}:=\{x \in V: h(x)=\lambda x\},
$$

is a subspace of V.

Solution:

We have to show that $E_{h, \lambda}$ contains the 0 -vector, is closed under addition and scalar multiples. Using the linearity of h we get:
$0 \in E_{h, \lambda}$ since $h(0)=0=\lambda 0$
If $u, v \in E_{h, \lambda}$, then $h(u+v)=h(u)+h(v)=\lambda u+\lambda v=\lambda(u+v)$ and $u+v \in E_{h, \lambda}$. If $v \in E_{h, \lambda}$ and $c \in F$, then $h(c v)=c h(v)=c \lambda v=\lambda c v$ and $c v \in E_{h, \lambda}$.
(3) Give all eigenvalues and bases for eigenspaces of the following matrices. Do you need the characteristic polynomials?

$$
A=\left[\begin{array}{cc}
-3 & 1 \\
0 & -3
\end{array}\right]
$$

Solution:

$$
B=\left[\begin{array}{ccc}
2 & 0 & 0 \\
1 & 0 & 0 \\
-1 & 0 & 3
\end{array}\right]
$$

Since A, B are triangular matrices, their eigenvalues are just their diagonal elements.
(a) A has eigenvalue -3 with multiplicity $2: \operatorname{Nul}(A-(-3) I)$ has basis $\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$
(b) B has eigenvalues 2,0,3:
$\operatorname{Nul}(A-2 I)$ has basis $\left(\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]\right)$.
$\operatorname{Nul}(A-0 I)$ has basis $\left(\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right)$.
$\operatorname{Nul}(A-3 I)$ has basis $\left(\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\right)$.
(4) Give the characteristic polynomial, all eigenvalues and bases for eigenspaces for $C=$ $\left[\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right]$.

Solution:

Characteristic polynomial:

$$
\begin{aligned}
\operatorname{det}(C-\lambda I) & =(1-\lambda)(1-\lambda)-2 \cdot 3 \\
& =\lambda^{2}-2 \lambda-5
\end{aligned}
$$

Eigenvalues are the roots of the characteristic polynomial. Use the quadratic formula

$$
\begin{aligned}
\lambda_{1,2} & =1 \pm \sqrt{1+5} \\
& =1 \pm \sqrt{6}
\end{aligned}
$$

Eigenvector for $\lambda=1+\sqrt{6}$:

$$
C-\lambda I=\left[\begin{array}{cc}
-\sqrt{6} & 2 \\
3 & -\sqrt{6}
\end{array}\right] \sim\left[\begin{array}{cc}
-\sqrt{6} & 2 \\
0 & 0
\end{array}\right]
$$

where we multiplied row 1 by $\frac{3}{\sqrt{6}}$ and added to row 2 .
So the eigenspace for $\lambda=1+\sqrt{6}$ has basis $\left(\left[\begin{array}{c}2 \\ \sqrt{6}\end{array}\right]\right)$.
Eigenvector for $\lambda=1-\sqrt{6}$:

$$
C-\lambda I=\left[\begin{array}{cc}
\sqrt{6} & 2 \\
3 & \sqrt{6}
\end{array}\right] \sim\left[\begin{array}{cc}
\sqrt{6} & 2 \\
0 & 0
\end{array}\right]
$$

where we multiplied row 1 by $\frac{3}{\sqrt{6}}$ and subtracted from row 2 .
So the eigenspace for $\lambda=1-\sqrt{6}$ has basis $\left(\left[\begin{array}{c}-2 \\ \sqrt{6}\end{array}\right]\right)$.
(5) Compute eigenvalues and eigenvectors for $D=\left[\begin{array}{ccc}-1 & 4 & 1 \\ 6 & 9 & 2 \\ 0 & 0 & -3\end{array}\right]$.

Solution:

Characteristic polynomial:

$$
\begin{aligned}
\operatorname{det}(D-\lambda I) & =(-3-\lambda) \cdot \operatorname{det}\left[\begin{array}{cc}
-1-\lambda & 4 \\
6 & 9-\lambda
\end{array}\right] \\
& (-3-\lambda)[(-1-\lambda)(9-\lambda)-24] \\
& (-3-\lambda)\left[\lambda^{2}-8 \lambda-33\right]
\end{aligned}
$$

Eigenvalues are $\lambda_{1}=-3$ and the roots of $\lambda^{2}-8 \lambda-33$. The quadratic formula yields

$$
\lambda_{2,3}=4 \pm \sqrt{4^{2}+33}
$$

So $\lambda_{2}=-3$ and $\lambda_{3}=11$.
The eigenspace for $\lambda=-3$ has basis $\left(\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]\right)$.

The eigenspace for $\lambda=11$ has basis $\left(\left[\begin{array}{l}1 \\ 3 \\ 0\end{array}\right]\right)$.
(6) Are the matrices A, B, C, D in (3), (4), (5) diagonalizable? How?
(7) Let A be an $n \times n$-matrix. Are the following true or false? Explain why:
(a) If A has n eigenvectors, then A is diagonalizable.
(b) If a 4×4-matrix A has two eigenvalues with eigenspaces of dimension 3 and 1 , respectively, then A is diagonalizable.
(c) A is diagonalizable iff A has n eigenvalues (counting multiplicities).
(d) If \mathbb{R}^{n} has a basis of eigenvectors of A, then A is diagonalizable.
(8) Let $A \in \mathbb{R}^{n \times n}$ with n eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ (repeated according to their multiplicities). Show that

$$
\operatorname{det} A=\lambda_{1} \cdot \lambda_{2} \cdots \lambda_{n}
$$

Hint: Consider the characteristic polynomial $\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right)$.

Solution:

Since $\lambda_{1}, \ldots, \lambda_{n}$ are the roots of the characteristic polynomial, the characteristic polynomial can be factored as

$$
\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right)
$$

Note that the signs are correct because on both sides of the equation the coefficient of λ^{n} is $(-1)^{n}$.

By plugging in $\lambda=0$ we get

$$
\operatorname{det} A=\lambda_{1} \cdot \lambda_{2} \cdots \lambda_{n} .
$$

