Math 2135-Assignment 11

Due November 12, 2021
(1) Let $A \in F^{n \times n}$. Are the following true or false? Explain why:
(a) If two rows or columns of A are identical, then $\operatorname{det} A=0$.
(b) For $c \in F, \operatorname{det}(c A)=c \operatorname{det} A$.
(c) If A is invertible, then $\operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A}$.
(d) A is invertible iff 0 is not an eigenvalue of A.
(2) Eigenvalues, -vectors and -spaces can be be defined for linear maps just as for matrices.

Let $h: V \rightarrow W$ be a linear map for vector spaces V, W over F. Show that the eigenspace for $\lambda \in F$,

$$
E_{h, \lambda}:=\{x \in V: h(x)=\lambda x\}
$$

is a subspace of V.
(3) Give all eigenvalues and bases for eigenspaces of the following matrices. Do you need the characteristic polynomials?

$$
A=\left[\begin{array}{cc}
-3 & 1 \\
0 & -3
\end{array}\right] \quad B=\left[\begin{array}{ccc}
2 & 0 & 0 \\
1 & 0 & 0 \\
-1 & 0 & 3
\end{array}\right]
$$

(4) Give the characteristic polynomial, all eigenvalues and bases for eigenspaces for $C=$ $\left[\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right]$.
(5) Compute eigenvalues and eigenvectors for $D=\left[\begin{array}{ccc}-1 & 4 & 1 \\ 6 & 9 & 2 \\ 0 & 0 & -3\end{array}\right]$.
(6) Are the matrices A, B, C, D in (3), (4), (5) diagonalizable? How?
(7) Let A be an $n \times n$-matrix. Are the following true or false? Explain why:
(a) If A has n eigenvectors, then A is diagonalizable.
(b) If a 4×4-matrix A has two eigenvalues with eigenspaces of dimension 3 and 1 , respectively, then A is diagonalizable.
(c) A is diagonalizable iff A has n eigenvalues (counting multiplicities).
(d) If \mathbb{R}^{n} has a basis of eigenvectors of A, then A is diagonalizable.
(8) Let $A \in \mathbb{R}^{n \times n}$ with n eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ (repeated according to their multiplicities). Show that

$$
\operatorname{det} A=\lambda_{1} \cdot \lambda_{2} \cdots \lambda_{n}
$$

Hint: Consider the characteristic polynomial $\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right)$.

