Math 2130 - Assignment 10

Due November 5, 2021

Problems 1-7 are review material for the second midterm on November 3. Solve them before Wednesday!
(1) Let $T: P_{2} \rightarrow \mathbb{R}, p \mapsto p(3)$, be the map that evaluates a polynomial p at $x=3$.
(a) Show that T is linear.
(b) Determine the kernel of T, that is, $\left\{p \in P_{2}: T(p)=0\right\}$, and the image of T, that is, $T\left(P_{2}\right)$.
(c) Is T injective, surjective, bijective?

Solution:

(a) For linearity, let $p, q \in P_{2}$. Their sum $p+q$ is the polynomial that maps t to $p(t)+q(t)$. So

$$
T(p+q)=(p+q)(3)=p(3)+q(3)=T(p)+T(q) .
$$

Further let $c \in \mathbb{R}$. Then $c p$ maps t to $c p(t)$. So

$$
T(c p)=(c p)(3)=c p(3)=c T(p)
$$

Hence T is linear.
(b) The kernel of T, $\operatorname{ker} T$, consists of all the polynomials that evaluate to 0 at 3 , that is,

$$
\operatorname{ker} T=\left\{(t-3) q: q \in P_{1}\right\}
$$

The range of $T, T\left(P_{2}\right)$, is \mathbb{R}. For every $b \in \mathbb{R}$, there exists a polynomial $p \in P_{2}$ that is mapped to b. Choose for example the constant polynomial $p(t)=b$.
(c) Since the kernel of T is non-trivial, T is not injective.

Since the range of T is equal to its codomain, T is surjective.
T is not bijective since it is not injective.
(2) Let $B=\left(b_{1}, b_{2}\right)$ with $b_{1}=\left[\begin{array}{c}-5 \\ 11 \\ 5\end{array}\right], b_{2}=\left[\begin{array}{c}3 \\ -1 \\ 4\end{array}\right]$ and $C=\left(\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 1\end{array}\right]\right)$ be bases of a subspace H of \mathbb{R}^{3}.
(a) Compute the coordinates $\left[b_{1}\right]_{C}$ and $\left[b_{2}\right]_{C}$.
(b) What is the change of coordinate matrix $P_{C \leftarrow B}$?
(c) What is the change of coordinate matrix $P_{B \leftarrow C}$?

Solution:

(a) Solve the linear system

$$
x_{1}\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]+x_{2}\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
-5 \\
11 \\
5
\end{array}\right]
$$

to obtain $x_{1}=3, x_{2}=-4$. So $\left[b_{1}\right]_{C}=\left[\begin{array}{c}3 \\ -4\end{array}\right]$.

Similarly we get $\left[b_{2}\right]_{C}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(b) Since the columns of $P_{C \leftarrow B}$ are just the coordinate tuples $\left[b_{i}\right]_{C}$, we see

$$
P_{C \leftarrow B}=\left[\begin{array}{cc}
3 & 1 \\
-4 & 1
\end{array}\right]
$$

(c)

$$
P_{B \leftarrow C}=P_{C \leftarrow B}^{-1}=\frac{1}{7}\left[\begin{array}{cc}
1 & -1 \\
4 & 3
\end{array}\right]
$$

Alternatively we could also get $P_{B \leftarrow C}$ from its columns $\left[c_{i}\right]_{B}$.
(3) Let $C=\left(1+t, t+t^{2}, 1+t^{2}\right)$ be a basis for P_{2}. Compute the coordinates $[p]_{C}$ for $p=2+t^{2}$.

Solution:

Solve

$$
c_{1}(1+t)+c_{2}\left(t+t^{2}\right)+c_{3}\left(1+t^{2}\right)=2+t^{2}
$$

Comparing the coefficients on both sides of this equation yields

$$
\begin{array}{ll}
c_{1}+c_{3}=2 & \text { (constant part) } \\
c_{1}+c_{2}=0 & (\text { multiples of } t) \\
c_{2}+c_{3}=1 & \left(\text { multiples of } t^{2}\right)
\end{array}
$$

Solving that system of linear equations yields $c_{1}=\frac{1}{2}, c_{2}=-\frac{1}{2}, c_{3}=\frac{3}{2}$. So $[u]_{B}=$ $\left[\begin{array}{c}\frac{1}{2} \\ -\frac{1}{2} \\ \frac{3}{2}\end{array}\right]$.
(4) (a) If A is a 3×4-matrix, what is the largest possible rank of A ? What is the smallest possible dimension of $\operatorname{Nul} A$?

Solution:

The rank of a matrix is the number of its pivot elements, which is at most the number of its rows and at most the number of its columns. So $\operatorname{rank} A \leq$ $\max (3,4)=3$. Since the largest possible rank is 3 , the smallest number of free variables in $A x=0$ is 1 . So the dimension of $\operatorname{Nul} A$ is 1 or larger.
(b) If the nullspace of a 4×6-matrix B has dimension 3 , what is the dimension of the row space of B ?

Solution:

$\operatorname{dim} \operatorname{Nul} A+\operatorname{dim}$ Row $A=$ the number of columns of A
So dim Row $A=3$.
(c) Give two 3×3-matrices with determinant 6 .

Solution:

Any triangular or diagonal matrix whose diagonal elements multiply to 6 will do, e.g.,

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 6
\end{array}\right]
$$

(5) Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $B=\left[\begin{array}{cc}u & v \\ w & x\end{array}\right]$. Show

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Solution:

$$
\begin{gathered}
A B=\left[\begin{array}{ll}
a u+b w & a v+b x \\
c u+d w & c v+d x
\end{array}\right] \\
\operatorname{det} A B=(a u+b w)(c v+d x)-(a v+b x)(c u+d w)=\cdots=\operatorname{det} A \cdot \operatorname{det} B
\end{gathered}
$$

(6) Let $A \in \mathbb{R}^{n \times n}$ and $\lambda \in \mathbb{R}$. Is

$$
H=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\lambda \mathbf{x}\right\}
$$

a subspace of \mathbb{R}^{n} ? Which conditions for a subspace are fulfilled by H ?

Solution:

Yes. We show the subspace conditions:
(1) Since $A \mathbf{0}=\mathbf{0}=\lambda \mathbf{0}$, the zero vector is in H.
(2) Let $u, v \in H$. Then $A(u+v)=A u+A v=\lambda u+\lambda v=\lambda(u+v)$. Thus $u+v \in H$.
(3) Let $r \in \mathbb{R}$. Then $A(r u)=r A u=r \lambda u=\lambda(r u)$. Thus $r u \in H$.
(7) For which $\mu \in \mathbb{R}$ has the matrix

$$
B=\left[\begin{array}{cc}
6-\mu & 2 \\
-6 & -1-\mu
\end{array}\right]
$$

a determinant $\operatorname{det} B=0$?

Solution:

$\operatorname{det} B=(6-\mu)(-1-\mu)-(-12)=\mu^{2}+\mu-6 \mu-6+12=\mu^{2}-5 \mu+6$.
Now det $B=0$ yields a quadratic equation $\mu^{2}-5 \mu+6=0$ whose solution is

$$
\mu=\frac{5 \pm \sqrt{5^{2}-4 \cdot 6}}{2}=\frac{5}{2} \pm \frac{1}{2} \in\{2,3\} .
$$

Thus $\operatorname{det} B=0$ iff $\mu \in\{2,3\}$.
(8) Let

$$
A=\left[\begin{array}{cc}
6 & 2 \\
-6 & -1
\end{array}\right]
$$

(a) Compute the matrices $A-2 I, A-3 I$, and $A-I$.
(b) Find all $\mathbf{x} \in \mathbb{R}^{3}$ such that $A \mathbf{x}=2 \mathbf{x}$. Give the parametrized vector form for the solution set.
Hint: $A \mathrm{x}=2 \mathrm{x}$ iff $A \mathrm{x}=2 I \mathrm{x}$ iff $(A-2 I) \mathrm{x}=\mathbf{0}$.
(c) Find all $\mathbf{x} \in \mathbb{R}^{3}$ such that $A \mathbf{x}=3 \mathbf{x}$. Give the parametrized vector form.
(d) Find all $\mathbf{x} \in \mathbb{R}^{3}$ such that $A \mathbf{x}=\mathbf{x}$. Give the parametrized vector form.

Solution:

(a)

$$
A-2 I=\left[\begin{array}{cc}
4 & 2 \\
-6 & -3
\end{array}\right], \quad A-3 I=\left[\begin{array}{cc}
3 & 2 \\
-6 & -4
\end{array}\right], \quad A-I=\left[\begin{array}{cc}
5 & 2 \\
-6 & -2
\end{array}\right] .
$$

(b) We solve $(A-2 I) \mathbf{x}=\mathbf{0}$ and obtain $\mathbf{x}=r\left[\begin{array}{c}-\frac{1}{2} \\ 1\end{array}\right]$ for $r \in \mathbb{R}$.
(c) We solve $(A-3 I) \mathbf{x}=\mathbf{0}$ and obtain $\mathbf{x}=r\left[\begin{array}{c}-\frac{2}{3} \\ 1\end{array}\right]$ for $r \in \mathbb{R}$.
(d) We solve $(A-I) \mathbf{x}=\mathbf{0}$ and obtain $\mathbf{x}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.

