Math 2130 - Assignment 10

Due November 5, 2021

Problems 1-7 are review material for the second midterm on November 3. Solve them before Wednesday!

- (1) Let $T: P_2 \to \mathbb{R}, p \mapsto p(3)$, be the map that evaluates a polynomial p at x = 3.
 - (a) Show that T is linear.
 - (b) Determine the kernel of T, that is, $\{p \in P_2 : T(p) = 0\}$, and the image of T, that is, $T(P_2)$.
 - (c) Is T injective, surjective, bijective?

Solution:

(a) For linearity, let $p, q \in P_2$. Their sum p + q is the polynomial that maps t to p(t) + q(t). So

$$T(p+q) = (p+q)(3) = p(3) + q(3) = T(p) + T(q).$$

Further let $c \in \mathbb{R}$. Then cp maps t to cp(t). So

$$T(cp) = (cp)(3) = cp(3) = cT(p).$$

Hence T is linear.

(b) The kernel of T, ker T, consists of all the polynomials that evaluate to 0 at 3, that is,

$$\ker T = \{(t-3)q : q \in P_1\}.$$

The range of T, $T(P_2)$, is \mathbb{R} . For every $b \in \mathbb{R}$, there exists a polynomial $p \in P_2$ that is mapped to b. Choose for example the constant polynomial p(t) = b.

(c) Since the kernel of T is non-trivial, T is not injective. Since the range of T is equal to its codomain, T is surjective. T is not bijective since it is not injective.

- (2) Let $B = (b_1, b_2)$ with $b_1 = \begin{bmatrix} -5\\11\\5 \end{bmatrix}, b_2 = \begin{bmatrix} 3\\-1\\4 \end{bmatrix}$ and $C = (\begin{bmatrix} 1\\1\\3 \end{bmatrix}, \begin{bmatrix} 2\\-2\\1 \end{bmatrix})$ be bases of a subspace H of \mathbb{R}^3 .
 - (a) Compute the coordinates $[b_1]_C$ and $[b_2]_C$.
 - (b) What is the change of coordinate matrix $P_{C \leftarrow B}$?
 - (c) What is the change of coordinate matrix $P_{B\leftarrow C}$?

Solution:

(a) Solve the linear system

$$x_1 \begin{bmatrix} 1\\1\\3 \end{bmatrix} + x_2 \begin{bmatrix} 2\\-2\\1 \end{bmatrix} = \begin{bmatrix} -5\\11\\5 \end{bmatrix}$$

to obtain $x_1 = 3, x_2 = -4$. So $[b_1]_C = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$.

Similarly we get $[b_2]_C = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. (b) Since the columns of $P_{C \leftarrow B}$ are just the coordinate tuples $[b_i]_C$, we see

$$P_{C \leftarrow B} = \begin{bmatrix} 3 & 1\\ -4 & 1 \end{bmatrix}$$

(c)

$$P_{B\leftarrow C} = P_{C\leftarrow B}^{-1} = \frac{1}{7} \begin{bmatrix} 1 & -1 \\ 4 & 3 \end{bmatrix}$$

Alternatively we could also get $P_{B\leftarrow C}$ from its columns $[c_i]_B$.

(3) Let $C = (1 + t, t + t^2, 1 + t^2)$ be a basis for P_2 . Compute the coordinates $[p]_C$ for $p = 2 + t^2$.

Solution:

Solve

$$c_1(1+t) + c_2(t+t^2) + c_3(1+t^2) = 2+t^2.$$

Comparing the coefficients on both sides of this equation yields

$c_1 + c_3 = 2$	(constant part)
$c_1 + c_2 = 0$	(multiples of t)
$c_2 + c_3 = 1$	(multiples of t^2)

Solving that system of linear equations yields $c_1 = \frac{1}{2}, c_2 = -\frac{1}{2}, c_3 = \frac{3}{2}$. So $[u]_B = \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ \frac{3}{2} \end{bmatrix}$.

(4) (a) If A is a 3×4 -matrix, what is the largest possible rank of A? What is the smallest possible dimension of Nul A?

Solution:

The rank of a matrix is the number of its pivot elements, which is at most the number of its rows and at most the number of its columns. So rank $A \leq \max(3,4) = 3$. Since the largest possible rank is 3, the smallest number of free variables in Ax = 0 is 1. So the dimension of Nul A is 1 or larger.

(b) If the nullspace of a 4×6 -matrix B has dimension 3, what is the dimension of the row space of B?

Solution:

dim Nul A + dim Row A = the number of columns of ASo dim Row A = 3.

(c) Give two 3×3 -matrices with determinant 6.

Solution:

Any triangular or diagonal matrix whose diagonal elements multiply to 6 will do, e.g.,

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 6 \end{bmatrix}$$

(5) Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 and $B = \begin{bmatrix} u & v \\ w & x \end{bmatrix}$. Show $\det(AB) = \det(A) \det(B)$

Solution:

$$AB = \begin{bmatrix} au + bw & av + bx \\ cu + dw & cv + dx \end{bmatrix}$$
$$\det AB = (au + bw)(cv + dx) - (av + bx)(cu + dw) = \dots = \det A \cdot \det B$$

(6) Let $A \in \mathbb{R}^{n \times n}$ and $\lambda \in \mathbb{R}$. Is

$$H = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \lambda \mathbf{x} \}$$

a subspace of \mathbb{R}^n ? Which conditions for a subspace are fulfilled by H?

Solution:

Yes. We show the subspace conditions:

- (1) Since $A\mathbf{0} = \mathbf{0} = \lambda \mathbf{0}$, the zero vector is in *H*.
- (2) Let $u, v \in H$. Then $A(u+v) = Au + Av = \lambda u + \lambda v = \lambda(u+v)$. Thus $u+v \in H$.
- (3) Let $r \in \mathbb{R}$. Then $A(ru) = rAu = r\lambda u = \lambda(ru)$. Thus $ru \in H$.

(7) For which $\mu \in \mathbb{R}$ has the matrix

$$B = \begin{bmatrix} 6-\mu & 2\\ -6 & -1-\mu \end{bmatrix}$$

a determinant det B = 0?

Solution:

det $B = (6 - \mu)(-1 - \mu) - (-12) = \mu^2 + \mu - 6\mu - 6 + 12 = \mu^2 - 5\mu + 6$. Now det B = 0 yields a quadratic equation $\mu^2 - 5\mu + 6 = 0$ whose solution is

$$\mu = \frac{5 \pm \sqrt{5^2 - 4 \cdot 6}}{2} = \frac{5}{2} \pm \frac{1}{2} \in \{2, 3\}.$$

Thus det B = 0 iff $\mu \in \{2, 3\}$.

(8) Let

$$A = \begin{bmatrix} 6 & 2\\ -6 & -1 \end{bmatrix}.$$

- (a) Compute the matrices A 2I, A 3I, and A I.
- (b) Find all $\mathbf{x} \in \mathbb{R}^3$ such that $A\mathbf{x} = 2\mathbf{x}$. Give the parametrized vector form for the solution set.

Hint: $A\mathbf{x} = 2\mathbf{x}$ iff $A\mathbf{x} = 2I\mathbf{x}$ iff $(A - 2I)\mathbf{x} = \mathbf{0}$.

- (c) Find all $\mathbf{x} \in \mathbb{R}^3$ such that $A\mathbf{x} = 3\mathbf{x}$. Give the parametrized vector form.
- (d) Find all $\mathbf{x} \in \mathbb{R}^3$ such that $A\mathbf{x} = \mathbf{x}$. Give the parametrized vector form.

Solution:

3

(a)

$$A - 2I = \begin{bmatrix} 4 & 2 \\ -6 & -3 \end{bmatrix}, \quad A - 3I = \begin{bmatrix} 3 & 2 \\ -6 & -4 \end{bmatrix}, \quad A - I = \begin{bmatrix} 5 & 2 \\ -6 & -2 \end{bmatrix}.$$
(b) We solve $(A - 2I)\mathbf{x} = \mathbf{0}$ and obtain $\mathbf{x} = r \begin{bmatrix} -\frac{1}{2} \\ 1 \\ 1 \end{bmatrix}$ for $r \in \mathbb{R}$.
(c) We solve $(A - 3I)\mathbf{x} = \mathbf{0}$ and obtain $\mathbf{x} = r \begin{bmatrix} -\frac{2}{3} \\ 1 \end{bmatrix}$ for $r \in \mathbb{R}$.
(d) We solve $(A - I)\mathbf{x} = \mathbf{0}$ and obtain $\mathbf{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.