Math 2130 - Assignment 10

Due November 5, 2021
Problems 1-7 are review material for the second midterm on November 3. Solve them before Wednesday!
(1) Let $T: P_{2} \rightarrow \mathbb{R}, p \mapsto p(3)$, be the map that evaluates a polynomial p at $x=3$.
(a) Show that T is linear.
(b) Determine the kernel of T, that is, $\left\{p \in P_{2}: T(p)=0\right\}$, and the image of T, that is, $T\left(P_{2}\right)$.
(c) Is T injective, surjective, bijective?
(2) Let $B=\left(b_{1}, b_{2}\right)$ with $b_{1}=\left[\begin{array}{c}-5 \\ 11 \\ 5\end{array}\right], b_{2}=\left[\begin{array}{c}3 \\ -1 \\ 4\end{array}\right]$ and $C=\left(\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 1\end{array}\right]\right)$ be bases of a subspace H of \mathbb{R}^{3}.
(a) Compute the coordinates $\left[b_{1}\right]_{C}$ and $\left[b_{2}\right]_{C}$.
(b) What is the change of coordinate matrix $P_{C \leftarrow B}$?
(c) What is the change of coordinate matrix $P_{B \leftarrow C}$?
(3) Let $C=\left(1+t, t+t^{2}, 1+t^{2}\right)$ be a basis for P_{2}. Compute the coordinates $[p]_{C}$ for $p=2+t^{2}$.
(4) (a) If A is a 3×4-matrix, what is the largest possible rank of A ? What is the smallest possible dimension of $\operatorname{Nul} A$?
(b) If the nullspace of a 4×6-matrix B has dimension 3 , what is the dimension of the row space of B ?
(c) Give two 3×3-matrices with determinant 6 .
(5) Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $B=\left[\begin{array}{ll}u & v \\ w & x\end{array}\right]$. Show

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

(6) Let $A \in \mathbb{R}^{n \times n}$ and $\lambda \in \mathbb{R}$. Is

$$
H=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\lambda \mathbf{x}\right\}
$$

a subspace of \mathbb{R}^{n} ? Which conditions for a subspace are fulfilled by H ?
(7) For which $\mu \in \mathbb{R}$ has the matrix

$$
B=\left[\begin{array}{cc}
6-\mu & 2 \\
-6 & -1-\mu
\end{array}\right]
$$

a determinant $\operatorname{det} B=0$?
(8) Let

$$
A=\left[\begin{array}{cc}
6 & 2 \\
-6 & -1
\end{array}\right]
$$

(a) Compute the matrices $A-2 I, A-3 I$, and $A-I$.
(b) Find all $\mathbf{x} \in \mathbb{R}^{3}$ such that $A \mathbf{x}=2 \mathbf{x}$. Give the parametrized vector form for the solution set.
Hint: $A \mathrm{x}=2 \mathrm{x}$ iff $A \mathrm{x}=2 I \mathrm{x}$ iff $(A-2 I) \mathbf{x}=\mathbf{0}$.
(c) Find all $\mathbf{x} \in \mathbb{R}^{3}$ such that $A \mathbf{x}=3 \mathbf{x}$. Give the parametrized vector form.
(d) Find all $\mathbf{x} \in \mathbb{R}^{3}$ such that $A \mathbf{x}=\mathbf{x}$. Give the parametrized vector form.

