Math 2130 - Assignment 9

Due October 29, 2021

(1) Let P_{3} the vector space of polynomials of degree ≤ 3 over \mathbb{R} with basis $B=$ $\left(1, x, x^{2}, x^{3}\right)$.
(a) Find the matrix $d_{B \leftarrow B}$ for the derivation map $d: P_{3} \rightarrow P_{3}, p \rightarrow p^{\prime}$.
(b) Use $d_{B \leftarrow B}$ to compute $\left[p^{\prime}\right]_{B}$ and p^{\prime} for the polynomial p with $[p]_{B}=(-3,2,0,1)$.

Solution:

Compute coordinates of the derivatives $d\left(b_{i}\right)$ for the basis vectors in B to get

$$
d_{B \leftarrow B}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Then $\left[p^{\prime}\right]_{B}=d_{B \leftarrow B}[p]_{b}=(2,0,3)$ and $p^{\prime}=2+3 x^{2}$.
(2) Let $B=\left(\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right)$ and $C=\left(\left[\begin{array}{l}2 \\ 5\end{array}\right],\left[\begin{array}{l}1 \\ 3\end{array}\right]\right)$ be bases of \mathbb{R}^{2}, let E be the standard basis of \mathbb{R}^{2}.
(a) Find the change of coordinates matrix $P_{E \leftarrow B}$ for $f:[u]_{B} \mapsto[u]_{E}$.
(b) Find the change of coordinates matrix $P_{C \leftarrow E}$ for $g:[u]_{E} \mapsto[u]_{C}$.
(c) Find the change of coordinates matrix $P_{C \leftarrow B}$ for $h:[u]_{B} \mapsto[u]_{C}$. Hint: h is the composition of g and $f, h\left([u]_{B}\right)=g\left(f\left([u]_{B}\right)\right)$.

Solution:

Let E be the standard basis of \mathbb{R}^{2}.
(a) How to compute E-coordinates from B-coordinates? The standard matrix for f is

$$
P_{B \leftarrow E}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Note that the columns are exactly the vectors of B. Changing coordinates from any B to the standard basis E is easy.
(b) How to compute C-coordinates from E-coordinates? The standard matrix for g is

$$
P_{E \leftarrow C}=P_{C \leftarrow E}^{-1}=\left[\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right]^{-1}=\frac{1}{1}\left[\begin{array}{cc}
3 & -1 \\
-5 & 2
\end{array}\right]
$$

Note that the matrix is the inverse of the matrix whose columns are the vectors of C. For changing coordinates from the standard basis E to a basis C you need to solve a linear system or find the inverse.
(c) How to compute C-coordinates from B-coordinates? First go from B-coordinates to E-coordinates and then to C-coordinates. The matrix for $h=g \circ f$ is

$$
P_{C \Leftarrow B}=P_{C \leftarrow E} P_{E \Leftarrow B}=\left[\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right]^{-1} \cdot\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
2 & 4 \\
-3 & -7
\end{array}\right]
$$

(3) Determine the standard matrix for the reflection t of \mathbb{R}^{2} at the line $3 x+y=0$ as follows:
(a) Find a basis B of \mathbb{R}^{2} whose vectors are easy to reflect.
(b) Give the matrix $t_{B \leftarrow B}$ for the reflection with respect to the coordinate system determined by B.
(c) Use the change of coordinate matrix to compute the standard matrix $t_{E \leftarrow E}$ with respect to the standard basis $E=\left(e_{1}, e_{2}\right)$.

Solution:

(a) Pick $B=\left(\left[\begin{array}{c}1 \\ -3\end{array}\right],\left[\begin{array}{l}3 \\ 1\end{array}\right]\right)$ with the first vector b_{1} on the line $3 x+y=0$, the second b_{2} orthogonal. Then $t\left(b_{1}\right)=b_{1}, t\left(b_{2}\right)=-b_{2}$.
(b)

$$
t_{B \leftarrow B}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

looks like the standard matrix for the reflection on the x-axis.
(c) To get $t_{E \leftarrow E}$ from $[t]_{B, B}$ we need to multiply with change of coordinate matrices,

$$
t_{E \leftarrow E}=P_{B \leftarrow E} t_{B \leftarrow B} P_{E \leftarrow B}=\left[\begin{array}{cc}
1 & 3 \\
-3 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 3 \\
-3 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & -3 \\
-3 & -1
\end{array}\right] \frac{1}{10}\left[\begin{array}{cc}
1 & -3 \\
3 & 1
\end{array}\right]=\frac{1}{10}\left[\begin{array}{cc}
-8 & -6 \\
-6 & 8
\end{array}\right]
$$

(4) (a) Determine the standard matrix A for the rotation r of \mathbb{R}^{3} around the z-axis through the angle $\pi / 3$ counterclockwise.
Hint: Use the matrix for the rotation around the origin in \mathbb{R}^{2} for the $x y$-plane. What happens to e_{3} under this rotation?
(b) Consider the rotation s of \mathbb{R}^{3} around the line spanned by $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ through the angle $\pi / 3$ counterclockwise. Find a basis of \mathbb{R}^{3} for which the matrix $s_{B \leftarrow B}$ is equal to A from (a).
(c) Give the standard matrix $s_{E \leftarrow E}$ for the standard basis E (You do not need to actually multiply and invert the involved matrices; the product formula is enough).

Solution:

(a) e_{3} remains fixed, e_{1}, e_{2} rotate like in \mathbb{R}^{2}, i.e.,

$$
A=\left[\begin{array}{ccc}
\cos \pi / 3 & -\sin \pi / 3 & 0 \\
\sin \pi / 3 & \cos \pi / 3 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(b) We want $b_{3}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ (fixed under rotation) and b_{1}, b_{2} in a plane orthogonal to b_{3}, orthogonal to each other and of length 1 , e.g.,

$$
b_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right], b_{2}=\frac{1}{\sqrt{70}}\left[\begin{array}{c}
3 \\
6 \\
-5
\end{array}\right] \text { (the normalized vector for } b_{3} \times b_{1} \text {). }
$$

Note that the basis b_{1}, b_{2}, b_{3} is right-handed since $b_{1} \times b_{2}$ points in direction of b_{3}. For $B=\left(b_{1}, b_{2}, b_{3}\right)$ the matrix $s_{B \leftarrow B}$ is equal to A from (a).
(c) To get the standard matrix $s_{E \leftarrow E}$ from $s_{B \leftarrow B}$ we need to multiply with change of coordinate matrices: let

$$
P_{E \leftarrow B}=\left[b_{1}, b_{2}, b_{3}\right]=: P
$$

be the matrix with vectors b_{1}, b_{2}, b_{3} in its columns. Then

$$
s_{E \leftarrow E}=P_{E \leftarrow B} s_{B, B} P_{E \leftarrow B}=P \cdot A \cdot P^{-1}
$$

(5) Compute the determinant of the matrices by cofactor expansion. Pick a row or column that yields the least amount of computation:

$$
A=\left[\begin{array}{ccc}
0 & 1 & -3 \\
5 & 4 & -4 \\
0 & -3 & -4
\end{array}\right] \quad B=\left[\begin{array}{cccc}
1 & 0 & -3 & 0 \\
3 & 1 & 5 & 1 \\
2 & 0 & 0 & 0 \\
7 & 1 & -2 & 5
\end{array}\right]
$$

Solution:

Expand $\operatorname{det} A$ down the first column:
$\operatorname{det} A=0 \cdot \operatorname{det} A_{11}-5 \cdot \operatorname{det} A_{21}+0 \cdot \operatorname{det} A_{31}=-5 \cdot \operatorname{det}\left[\begin{array}{cc}1 & -3 \\ -3 & -4\end{array}\right]=-5(1(-4)-(-3)(-3))=65$
Expand det B across 3rd row:

$$
\operatorname{det} B=2 \cdot \operatorname{det} B_{13}=2 \cdot \operatorname{det}\left[\begin{array}{ccc}
0 & -3 & 0 \\
1 & 5 & 1 \\
1 & -2 & 5
\end{array}\right]
$$

Expand across 1st row:

$$
\operatorname{det} B_{13}=-1(-3) \operatorname{det}\left[\begin{array}{ll}
1 & 1 \\
1 & 5
\end{array}\right]=3 \cdot(1 \cdot 5-1 \cdot 1)=12
$$

So $\operatorname{det} B=2 \cdot 12=24$.
(6) Rule of Sarrus for the determinant of 3×3-matrices. Let

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Prove that

$$
\operatorname{det} A=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}
$$

Hint: Expand $\operatorname{det} A$ across the first row.

Solution:

$$
\begin{aligned}
\operatorname{det} A & =a_{11} \cdot \operatorname{det} A_{11}-a_{12} \cdot \operatorname{det} A_{12}+a_{13} \cdot \operatorname{det} A_{13} \\
& =a_{11} \cdot \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]-a_{12} \cdot \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]+a_{13} \cdot \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right] \\
& =a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right)+a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right) \\
& =a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}
\end{aligned}
$$

(7) Consider $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
(a) How does switching the rows effect the determinant? Compare $\operatorname{det} A$ and $\operatorname{det}\left[\begin{array}{ll}c & d \\ a & b\end{array}\right]$.

Solution:
Interchanging 2 rows changes the sign of the determinant:

$$
\operatorname{det}\left[\begin{array}{ll}
c & d \\
a & b
\end{array}\right]=c b-a d=-\operatorname{det} A
$$

(b) How does multiplying one row by a scalar effect the determinant? Compare $\operatorname{det} A$ and $\operatorname{det}\left[\begin{array}{cc}r a & r b \\ c & d\end{array}\right]$.
(c) How does adding a multiple of one row to the other row effect the determinant?

Compare $\operatorname{det} A$ and $\operatorname{det}\left[\begin{array}{cc}a & b \\ c+r a & d+r b\end{array}\right]$.

Solution:

Adding a multiple of the first row to another does not change the determinant:

$$
\operatorname{det}\left[\begin{array}{cc}
a & b \\
c+r a & d+r b
\end{array}\right]=a(d+r b)-b(c+r a)=a d-b c=\operatorname{det} A
$$

(8) Compute the determinants by row reduction to echelon form:

$$
A=\left[\begin{array}{ccc}
3 & 3 & -3 \\
3 & 4 & -4 \\
2 & -3 & -5
\end{array}\right] \quad B=\left[\begin{array}{cccc}
1 & 3 & 2 & -4 \\
0 & 1 & 2 & -5 \\
2 & 7 & 6 & -3 \\
-3 & -10 & -7 & 2
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
\operatorname{det} A & =3 \cdot \operatorname{det}\left[\begin{array}{ccc}
1 & 1 & -1 \\
3 & 4 & -4 \\
2 & -3 & -5
\end{array}\right] \quad \text { factoring } 3 \text { from the first row } \\
& =3 \cdot \operatorname{det}\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & -1 \\
0 & -5 & -3
\end{array}\right] \quad \text { subtracting multiples of the first row from the others } \\
& =3 \cdot \operatorname{det}\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & -1 \\
0 & 0 & -8
\end{array}\right] \quad \text { adding } 5 \text { times the second row to the third } \\
& =3 \cdot 1 \cdot 1 \cdot(-8)=-24 .
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{det} B & =\operatorname{det}\left[\begin{array}{cccc}
1 & 3 & 2 & -4 \\
0 & 1 & 2 & -5 \\
0 & 1 & 2 & 5 \\
0 & -1 & -1 & -10
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{llll}
1 & 3 & 2 & -4 \\
0 & 1 & 2 & -5 \\
0 & 0 & 0 & 10 \\
0 & 0 & 1 & -15
\end{array}\right] \\
& =-\operatorname{det}\left[\begin{array}{cccc}
1 & 3 & 2 & -4 \\
0 & 1 & 2 & -5 \\
0 & 0 & 1 & -15 \\
0 & 0 & 0 & 10
\end{array}\right] \quad \text { flipped row } 3 \text { and } 4 \\
& =-1 \cdot 1 \cdot 1 \cdot 10=-10 .
\end{aligned}
$$

