Math 2130 - Assignment 9

Due October 29, 2021

- (1) Let P_3 the vector space of polynomials of degree ≤ 3 over \mathbb{R} with basis B = $(1, x, x^2, x^3).$
 - (a) Find the matrix $d_{B\leftarrow B}$ for the derivation map $d: P_3 \to P_3, p \to p'$.
 - (b) Use $d_{B\leftarrow B}$ to compute $[p']_B$ and p' for the polynomial p with $[p]_B = (-3, 2, 0, 1)$.
- (2) Let $B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $C = \begin{pmatrix} 2 \\ 5 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ be bases of \mathbb{R}^2 , let E be the standard basis

of \mathbb{R}^2 .

- (a) Find the change of coordinates matrix $P_{E\leftarrow B}$ for $f: [u]_B \mapsto [u]_E$.
- (b) Find the change of coordinates matrix $P_{C\leftarrow E}$ for $g: [u]_E \mapsto [u]_C$.
- (c) Find the change of coordinates matrix $P_{C \leftarrow B}$ for $h: [u]_B \mapsto [u]_C$. Hint: h is the composition of g and f, $h([u]_B) = g(f([u]_B))$.
- (3) Determine the standard matrix for the reflection t of \mathbb{R}^2 at the line 3x + y = 0 as follows:
 - (a) Find a basis B of \mathbb{R}^2 whose vectors are easy to reflect.
 - (b) Give the matrix $t_{B\leftarrow B}$ for the reflection with respect to the coordinate system determined by B.
 - (c) Use the change of coordinate matrix to compute the standard matrix $t_{E\leftarrow E}$ with respect to the standard basis $E = (e_1, e_2)$.
- (4) (a) Determine the standard matrix A for the rotation r of \mathbb{R}^3 around the z-axis through the angle $\pi/3$ counterclockwise. Hint: Use the matrix for the rotation around the origin in \mathbb{R}^2 for the xy-plane. What happens to e_3 under this rotation?
 - (b) Consider the rotation s of \mathbb{R}^3 around the line spanned by $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ through the angle $\pi/3$ counterclockwise. Find a basis of \mathbb{R}^3 for which the matrix $s_{B \leftarrow B}$ is equal to A from (a).
 - (c) Give the standard matrix $s_{E\leftarrow E}$ for the standard basis E (You do not need to actually multiply and invert the involved matrices; the product formula is enough).
- (5) Compute the determinant of the matrices by cofactor expansion. Pick a row or column that yields the least amount of computation:

Го	1	2]		[1	0	-3	0	
	$\begin{bmatrix} 0 & 1 \\ 5 & 4 \\ 0 & -3 \end{bmatrix}$	$\begin{bmatrix} -3\\ -4\\ -4 \end{bmatrix}$	D	3	1	5	1	
$A = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$			B =	2	0	0	0	.
[U			B =	7	1	-2	5	

(6) Rule of Sarrus for the determinant of 3×3 -matrices. Let

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Prove that

 $\det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$

Hint: Expand $\det A$ across the first row.

- (7) Consider $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
 - (a) How does switching the rows effect the determinant? Compare det A and det $\begin{vmatrix} c & d \\ a & b \end{vmatrix}$.

 - (c) How does adding a multiple of one row to the other row effect the determinant? Compare det A and det $\begin{bmatrix} a & b \\ c+ra & d+rb \end{bmatrix}$.
- (8) Compute the determinants by row reduction to echelon form:

$$A = \begin{bmatrix} 3 & 3 & -3 \\ 3 & 4 & -4 \\ 2 & -3 & -5 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 3 & 2 & -4 \\ 0 & 1 & 2 & -5 \\ 2 & 7 & 6 & -3 \\ -3 & -10 & -7 & 2 \end{bmatrix}$$