Math 2130 - Assignment 9

Due October 29, 2021

(1) Let P_{3} the vector space of polynomials of degree ≤ 3 over \mathbb{R} with basis $B=$ $\left(1, x, x^{2}, x^{3}\right)$.
(a) Find the matrix $d_{B \leftarrow B}$ for the derivation map $d: P_{3} \rightarrow P_{3}, p \rightarrow p^{\prime}$.
(b) Use $d_{B \leftarrow B}$ to compute $\left[p^{\prime}\right]_{B}$ and p^{\prime} for the polynomial p with $[p]_{B}=(-3,2,0,1)$.
(2) Let $B=\left(\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right)$ and $C=\left(\left[\begin{array}{l}2 \\ 5\end{array}\right],\left[\begin{array}{l}1 \\ 3\end{array}\right]\right)$ be bases of \mathbb{R}^{2}, let E be the standard basis of \mathbb{R}^{2}.
(a) Find the change of coordinates matrix $P_{E \leftarrow B}$ for $f:[u]_{B} \mapsto[u]_{E}$.
(b) Find the change of coordinates matrix $P_{C \leftarrow E}$ for $g:[u]_{E} \mapsto[u]_{C}$.
(c) Find the change of coordinates matrix $P_{C \leftarrow B}$ for $h:[u]_{B} \mapsto[u]_{C}$. Hint: h is the composition of g and $f, h\left([u]_{B}\right)=g\left(f\left([u]_{B}\right)\right)$.
(3) Determine the standard matrix for the reflection t of \mathbb{R}^{2} at the line $3 x+y=0$ as follows:
(a) Find a basis B of \mathbb{R}^{2} whose vectors are easy to reflect.
(b) Give the matrix $t_{B \leftarrow B}$ for the reflection with respect to the coordinate system determined by B.
(c) Use the change of coordinate matrix to compute the standard matrix $t_{E \leftarrow E}$ with respect to the standard basis $E=\left(e_{1}, e_{2}\right)$.
(4) (a) Determine the standard matrix A for the rotation r of \mathbb{R}^{3} around the z-axis through the angle $\pi / 3$ counterclockwise.
Hint: Use the matrix for the rotation around the origin in \mathbb{R}^{2} for the $x y$-plane. What happens to e_{3} under this rotation?
(b) Consider the rotation s of \mathbb{R}^{3} around the line spanned by $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ through the angle $\pi / 3$ counterclockwise. Find a basis of \mathbb{R}^{3} for which the matrix $s_{B \leftarrow B}$ is equal to A from (a).
(c) Give the standard matrix $s_{E \leftarrow E}$ for the standard basis E (You do not need to actually multiply and invert the involved matrices; the product formula is enough).
(5) Compute the determinant of the matrices by cofactor expansion. Pick a row or column that yields the least amount of computation:

$$
A=\left[\begin{array}{ccc}
0 & 1 & -3 \\
5 & 4 & -4 \\
0 & -3 & -4
\end{array}\right] \quad B=\left[\begin{array}{cccc}
1 & 0 & -3 & 0 \\
3 & 1 & 5 & 1 \\
2 & 0 & 0 & 0 \\
7 & 1 & -2 & 5
\end{array}\right]
$$

(6) Rule of Sarrus for the determinant of 3×3-matrices. Let

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Prove that

$$
\operatorname{det} A=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}
$$

Hint: Expand $\operatorname{det} A$ across the first row.
(7) Consider $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
(a) How does switching the rows effect the determinant? Compare $\operatorname{det} A$ and $\operatorname{det}\left[\begin{array}{ll}c & d \\ a & b\end{array}\right]$.
(b) How does multiplying one row by a scalar effect the determinant? Compare $\operatorname{det} A$ and $\operatorname{det}\left[\begin{array}{cc}r a & r b \\ c & d\end{array}\right]$.
(c) How does adding a multiple of one row to the other row effect the determinant?

Compare $\operatorname{det} A$ and $\operatorname{det}\left[\begin{array}{cc}a & b \\ c+r a & d+r b\end{array}\right]$.
(8) Compute the determinants by row reduction to echelon form:

$$
A=\left[\begin{array}{ccc}
3 & 3 & -3 \\
3 & 4 & -4 \\
2 & -3 & -5
\end{array}\right] \quad B=\left[\begin{array}{cccc}
1 & 3 & 2 & -4 \\
0 & 1 & 2 & -5 \\
2 & 7 & 6 & -3 \\
-3 & -10 & -7 & 2
\end{array}\right]
$$

