Math 2130-Assignment 8

Due October 22, 2021
(1) Give 2 different bases for

$$
H=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
3 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
3 \\
4
\end{array}\right]\right\}
$$

Solution:

Row reduction yields

$$
\left[\begin{array}{ccc}
1 & 3 & -1 \\
1 & -1 & 3 \\
2 & 0 & 4
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 3 & -1 \\
0 & -4 & 4 \\
0 & 0 & 0
\end{array}\right]
$$

So the first 2 columns of the original matrix are pivot columns and form a basis of H.

$$
B_{1}=\left(\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
3 \\
-1 \\
0
\end{array}\right]\right)
$$

Recall that the order of basis vectors is important (coordinates!). So by flipping the vectors we get a different basis

$$
B_{2}=\left(\left[\begin{array}{c}
3 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]\right)
$$

Also note that any 2 columns of the matrix are linearly independent. So any 2 distinct vectors in any order out of $\left\{\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}3 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 3 \\ 4\end{array}\right]\right\}$ form a basis.
(2) Let $B=\left(b_{1}, \ldots, b_{n}\right)$ be a basis for a vector space V and consider the coordinate mapping $V \rightarrow \mathbb{R}^{n}, x \mapsto[x]_{B}$.
(a) Show that $[c \cdot x]_{B}=c[x]_{B}$ for all $x \in V, c \in \mathbb{R}$.
(b) Show that the coordinate mapping is onto \mathbb{R}^{n}.

Solution:

(a) Let $x \in V$ with $x=c_{1} b_{1}+\ldots c_{n} b_{n}$ for $c_{1}, \ldots, c_{n} \in \mathbb{R}$. That is, $[x]_{B}=\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right]$.

Let $c \in \mathbb{R}$ and consider

$$
c x=c\left(c_{1} b_{1}+\ldots c_{n} b_{n}\right)=c c_{1} b_{1}+\ldots c c_{n} b_{n}
$$

Then the coordinates of $c x$ are

$$
[c x]_{B}=\left[\begin{array}{c}
c c_{1} \\
\vdots \\
c c_{n}
\end{array}\right]=c\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]=c[x]_{B} .
$$

(b) To show the map is onto \mathbb{R}^{n}, let $y=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right] \in \mathbb{R}^{n}$. We have to find $x \in V$ such that $[x]_{B}=y$. Pick $x=y_{1} b_{1}+\ldots y_{n} b_{n}$. This shows that the coordinate map is onto.
(3) Let $B=\left(\left[\begin{array}{c}1 \\ -2\end{array}\right],\left[\begin{array}{c}-3 \\ 4\end{array}\right]\right)$ be a basis of \mathbb{R}^{2}.
(a) Give the change of coordinates matrix $P_{E \leftarrow B}$ from B to the standard basis $E=\left(e_{1}, e_{2}\right)$ and $P_{B \leftarrow E}$.
(b) Find vectors $u, v \in \mathbb{R}^{2}$ with $[u]_{B}=\left[\begin{array}{l}0 \\ 1\end{array}\right],[v]_{B}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.
(c) Compute the coordinates relative to B of $w=\left[\begin{array}{c}-2 \\ 4\end{array}\right]$ and $x=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.

Solution:

(a) For $P_{E \leftarrow B}$ we put the vectors of B in the columns of a matrix,

$$
P_{E \leftarrow B}=\left[\begin{array}{cc}
1 & -3 \\
-2 & 4
\end{array}\right]
$$

(b) $u=P_{E \leftarrow B} \cdot[u]_{B}=\left[\begin{array}{c}-3 \\ 4\end{array}\right]$, the second vector in B
$v=\left[\begin{array}{cc}1 & -3 \\ -2 & 4\end{array}\right] \cdot\left[\begin{array}{l}3 \\ 2\end{array}\right]=\left[\begin{array}{c}-3 \\ 2\end{array}\right]$
(c) To find $[w]_{B}$ we can solve $P_{E \leftarrow B} \cdot[w]_{B}=w$ directly by row reduction. Alternatively, we can invert $P_{E \leftarrow B}$ and use the formula $[w]_{B}=P_{E \leftarrow B}^{-1} \cdot w$.

$$
P_{E \leftarrow B}^{-1}=\frac{1}{-2}\left[\begin{array}{ll}
4 & 3 \\
2 & 1
\end{array}\right]
$$

So

$$
\begin{gathered}
{[w]_{B}=\frac{1}{-2}\left[\begin{array}{ll}
4 & 3 \\
2 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
-2 \\
4
\end{array}\right]=\left[\begin{array}{c}
-2 \\
0
\end{array}\right]} \\
{[x]_{B}=\frac{1}{-2}\left[\begin{array}{ll}
4 & 3 \\
2 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]}
\end{gathered}
$$

(4) Let $B=\left(1, t, t^{2}\right)$ and $C=\left(1,1+t, 1+t+t^{2}\right)$ be bases of \mathbb{P}_{2}.
(a) Determine the polynomials p, q with $[p]_{B}=\left[\begin{array}{c}3 \\ 0 \\ -2\end{array}\right]$ and $[q]_{C}=\left[\begin{array}{c}3 \\ 0 \\ -2\end{array}\right]$.
(b) Compute $[r]_{B}$ and $[r]_{C}$ for $r=3+2 t+t^{2}$.

Solution:
(a) $p=3-2 t^{2}$,

$$
q=3 \cdot 1+0 \cdot(1+t)-2\left(1+t+t^{2}\right)=1-2 t-2 t^{2}
$$

(b) For the coordinates relative to B just take the coefficients of the polynomial:

$$
[r]_{B}=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

For the coordinates relative to C consider the equation

$$
\begin{aligned}
r & =x_{1} \cdot 1+x_{2}(1+t)+x_{3}\left(1+t+t^{2}\right) \\
& =\left(x_{1}+x_{2}+x_{3}\right)+\left(x_{2}+x_{3}\right) t+x_{3} t^{2}
\end{aligned}
$$

Comparing the coefficients we obtain $x_{3}=1, x_{2}=1, x_{1}=1$. So $[r]_{C}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \square$
(5) Let $\mathbf{b}_{1}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right], \mathbf{b}_{3}=\left[\begin{array}{c}1 \\ 2.5 \\ -5\end{array}\right]$.
(a) Find vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ such that $\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$ is a basis for \mathbb{R}^{3}.
(b) Find vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}$ such that $\left(\mathbf{b}_{3}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right)$ is a basis for \mathbb{R}^{3}.

Prove that your choices for (a) and (b) form a basis.

Solution:

Both bases have 3 vectors. Thus $k=1$ and $\ell=2$.
(a) One possible choice is $\mathbf{u}_{1}=\mathbf{e}_{1}$. We show that $\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{e}_{1}\right)$ is a basis by reducing the following augmented matrix to echelon form:

$$
\left[\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
2 & 1 & 0 & 0 \\
-1 & 3 & 0 & 0
\end{array}\right] \sim \cdots \sim\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

There is no free variable. Thus the columns are linearly independent. Also, the vectors span \mathbb{R}^{3} since there is no zero row.
(b) One possible choice is $\mathbf{v}_{1}=\mathbf{e}_{1}$ and $\mathbf{v}_{2}=\mathbf{e}_{2}$. We show that $\left(\mathbf{b}_{3}, \mathbf{e}_{1}, \mathbf{e}_{2}\right)$ is a basis by reducing the following augmented matrix to echelon form:

$$
\left[\begin{array}{ccc|c}
1 & 1 & 0 & 0 \\
2.5 & 0 & 1 & 0 \\
-5 & 0 & 0 & 0
\end{array}\right] \sim \cdots \sim\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

There is no free variable. Thus the columns are linearly independent. Also, the vectors span \mathbb{R}^{3} since there is no zero row.
(6) Let

$$
A=\left[\begin{array}{ccccc}
-5 & 8 & 0 & -17 & -2 \\
3 & -5 & 1 & 5 & 1 \\
11 & -19 & 7 & 1 & 3 \\
7 & -13 & 5 & -3 & 1
\end{array}\right]
$$

Find bases and dimensions for $\operatorname{Nul} A, \operatorname{Col} A$, and Row A, respectively.

Solution:

We reduce A to reduced echelon form:

$$
A \sim \cdots \sim\left[\begin{array}{ccccc}
1 & 0 & 0 & 5 & 2 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & -5 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

For $\operatorname{Nul} A$, we solve $A \mathbf{x}=\mathbf{0}$ and obtain

$$
\operatorname{Nul} A=\left\{\left.r\left[\begin{array}{c}
-5 \\
-1 \\
5 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-2 \\
-1 \\
0 \\
0 \\
1
\end{array}\right] \right\rvert\, r, s \in \mathbb{R}\right\}
$$

The two vectors form a basis for $\operatorname{Nul} A$.
The first three columns of A contain a pivot. Thus they form a basis

$$
B=\left(\left[\begin{array}{c}
-5 \\
3 \\
11 \\
7
\end{array}\right],\left[\begin{array}{c}
8 \\
-5 \\
-19 \\
-13
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
7 \\
5
\end{array}\right]\right)
$$

for $\operatorname{Col} A$.
The nonzero rows in any echelon form of A form a basis. E.g.,

$$
C=\left(\left[\begin{array}{l}
1 \\
0 \\
0 \\
5 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
1 \\
-5 \\
0
\end{array}\right]\right)
$$

is a basis for Row A.
(7) A 25×35 matrix A has 20 pivots. Find $\operatorname{dim} \operatorname{Nul} A, \operatorname{dim} \operatorname{Col} A, \operatorname{dim}$ Row A, and rank A.
Solution:
The number of pivots, $\operatorname{dim} \operatorname{Row} A, \operatorname{dim} \operatorname{Col} A$, and the rank are equal. So

$$
\operatorname{dim} \operatorname{Row} A=\operatorname{dim} \operatorname{Col} A=\operatorname{rank} A=20 .
$$

By the rank theorem, $\operatorname{dim} \operatorname{Nul} A+\operatorname{rank} A=35$. Thus

$$
\operatorname{dim} \operatorname{Nul} A=35-20=15
$$

(8) True or false? Explain.
(a) If B is an echelon form of a matrix A, then the pivot columns of B form a basis for the column space of A.
(b) If B is an echelon form of a matrix A, then the nonzero rows of B form a basis for the row space of A.
(c) A basis of B is a set of linear independent vectors in V that is as large as possible.
(d) If $\operatorname{dim} V=n$, then any n vectors that span V are linearly independent.
(e) Every 2-dimensional subspace of \mathbb{R}^{2} is a plane.

Solution:
(a) False! In general the columns of B will not span $\operatorname{Col} A$ any more. The pivot columns of A form a basis for $\operatorname{Col} A$.
(b) True. The rows of B still span Row A.
(c) True. If linear independent vectors a_{1}, \ldots, a_{k} in V do not span V yet, you can get a bigger linear set by adding a vector a_{k+1} which is not in $\operatorname{Span}\left\{a_{1}, \ldots, a_{k}\right\}$.
(d) True by the Basis Theorem.
(e) True since any two linear independent vectors in \mathbb{R}^{2} span a plane through the origin.

