Math 2130 - Assignment 8

Due October 22, 2021

(1) Give 2 different bases for

$$H = \operatorname{Span}\left\{ \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 3\\-1\\0 \end{bmatrix}, \begin{bmatrix} -1\\3\\4 \end{bmatrix} \right\}$$

Solution:

Row reduction yields

$$\begin{bmatrix} 1 & 3 & -1 \\ 1 & -1 & 3 \\ 2 & 0 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & -1 \\ 0 & -4 & 4 \\ 0 & 0 & 0 \end{bmatrix}.$$

So the first 2 columns of the original matrix are pivot columns and form a basis of H.

$$B_1 = \begin{pmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix})$$

Recall that the order of basis vectors is important (coordinates!). So by flipping the vectors we get a different basis

$$B_2 = \left(\begin{bmatrix} 3\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\2 \end{bmatrix} \right)$$

Also note that any 2 columns of the matrix are linearly independent. So any 2 distinct vectors in any order out of $\left\{ \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 3\\-1\\0 \end{bmatrix}, \begin{bmatrix} -1\\3\\4 \end{bmatrix} \right\}$ form a basis. \Box

- (2) Let $B = (b_1, \ldots, b_n)$ be a basis for a vector space V and consider the coordinate mapping $V \to \mathbb{R}^n, x \mapsto [x]_B$.
 - (a) Show that $[c \cdot x]_B = c[x]_B$ for all $x \in V, c \in \mathbb{R}$.
 - (b) Show that the coordinate mapping is onto \mathbb{R}^n .

Solution:

(a) Let $x \in V$ with $x = c_1 b_1 + \dots + c_n b_n$ for $c_1, \dots, c_n \in \mathbb{R}$. That is, $[x]_B = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$.

Let $c \in \mathbb{R}$ and consider

$$cx = c(c_1b_1 + \ldots + c_nb_n) = cc_1b_1 + \ldots + cc_nb_n.$$

Then the coordinates of cx are

$$[cx]_B = \begin{bmatrix} cc_1 \\ \vdots \\ cc_n \end{bmatrix} = c \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = c[x]_B.$$

- (b) To show the map is onto \mathbb{R}^n , let $y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n$. We have to find $x \in V$ such that $[x]_B = y$. Pick $x = y_1b_1 + \ldots y_nb_n$. This shows that the coordinate map is onto.
- (3) Let $B = \begin{pmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} -3 \\ 4 \end{bmatrix}$) be a basis of \mathbb{R}^2 . (a) Give the change of coordinates matrix .
 - (a) Give the change of coordinates matrix $P_{E \leftarrow B}$ from B to the standard basis $E = (e_1, e_2)$ and $P_{B \leftarrow E}$.
 - (b) Find vectors $u, v \in \mathbb{R}^2$ with $[u]_B = \begin{bmatrix} 0\\1 \end{bmatrix}, [v]_B = \begin{bmatrix} 3\\2 \end{bmatrix}$. (c) Compute the coordinates relative to B of $w = \begin{bmatrix} -2\\4 \end{bmatrix}$ and $x = \begin{bmatrix} 1\\0 \end{bmatrix}$. Solution:
 - (a) For $P_{E\leftarrow B}$ we put the vectors of B in the columns of a matrix,

$$P_{E\leftarrow B} = \begin{bmatrix} 1 & -3\\ -2 & 4 \end{bmatrix}$$

(b)
$$u = P_{E \leftarrow B} \cdot [u]_B = \begin{bmatrix} -3\\4 \end{bmatrix}$$
, the second vector in B
 $v = \begin{bmatrix} 1 & -3\\-2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 3\\2 \end{bmatrix} = \begin{bmatrix} -3\\2 \end{bmatrix}$
(c) To find $[w]_B$ we can solve P_{E} as $[w]_B = w$ direct

(c) To find $[w]_B$ we can solve $P_{E \leftarrow B} \cdot [w]_B = w$ directly by row reduction. Alternatively, we can invert $P_{E \leftarrow B}$ and use the formula $[w]_B = P_{E \leftarrow B}^{-1} \cdot w$.

$$P_{E\leftarrow B}^{-1} = \frac{1}{-2} \begin{bmatrix} 4 & 3\\ 2 & 1 \end{bmatrix}$$

 So

$$[w]_B = \frac{1}{-2} \begin{bmatrix} 4 & 3\\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} -2\\ 4 \end{bmatrix} = \begin{bmatrix} -2\\ 0 \end{bmatrix}$$
$$[x]_B = \frac{1}{-2} \begin{bmatrix} 4 & 3\\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1\\ 0 \end{bmatrix} = \begin{bmatrix} -2\\ -1 \end{bmatrix}$$

(4) Let $B = (1, t, t^2)$ and $C = (1, 1 + t, 1 + t + t^2)$ be bases of \mathbb{P}_2 .

- (a) Determine the polynomials p, q with $[p]_B = \begin{bmatrix} 3\\0\\-2 \end{bmatrix}$ and $[q]_C = \begin{bmatrix} 3\\0\\-2 \end{bmatrix}$. (b) Compute $[r]_B$ and $[r]_C$ for $r = 3 + 2t + t^2$. Solution:
- (a) $p = 3 2t^2$, $q = 3 \cdot 1 + 0 \cdot (1+t) - 2(1+t+t^2) = 1 - 2t - 2t^2$ (b) For the coordinates relative to *B* just take the coefficients of the polynomial: $[r]_B = \begin{bmatrix} 3\\2\\1 \end{bmatrix}$

For the coordinates relative to C consider the equation

$$r = x_1 \cdot 1 + x_2(1+t) + x_3(1+t+t^2)$$

= $(x_1 + x_2 + x_3) + (x_2 + x_3)t + x_3t^2$

Comparing the coefficients we obtain $x_3 = 1, x_2 = 1, x_1 = 1$. So $[r]_C = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$

(5) Let
$$\mathbf{b}_1 = \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} 1\\ 1\\ 3 \end{bmatrix}$, $\mathbf{b}_3 = \begin{bmatrix} 1\\ 2.5\\ -5 \end{bmatrix}$.

(a) Find vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ such that $(\mathbf{b}_1, \mathbf{b}_2, \mathbf{u}_1, \ldots, \mathbf{u}_k)$ is a basis for \mathbb{R}^3 . (b) Find vectors $\mathbf{v}_1, \ldots, \mathbf{v}_\ell$ such that $(\mathbf{b}_3, \mathbf{v}_1, \ldots, \mathbf{v}_\ell)$ is a basis for \mathbb{R}^3 .

Prove that your choices for (a) and (b) form a basis.

Solution:

Both bases have 3 vectors. Thus k = 1 and $\ell = 2$.

(a) One possible choice is $\mathbf{u}_1 = \mathbf{e}_1$. We show that $(\mathbf{b}_1, \mathbf{b}_2, \mathbf{e}_1)$ is a basis by reducing the following augmented matrix to echelon form:

Γ	1	1	1	$\left 0 \right $		1	1	1	0
	2	1	0	0	$\sim \cdots \sim$	0	1	0	0
	-1	3	0	0		0	0	1	0

There is no free variable. Thus the columns are linearly independent. Also, the vectors span \mathbb{R}^3 since there is no zero row.

(b) One possible choice is $\mathbf{v}_1 = \mathbf{e}_1$ and $\mathbf{v}_2 = \mathbf{e}_2$. We show that $(\mathbf{b}_3, \mathbf{e}_1, \mathbf{e}_2)$ is a basis by reducing the following augmented matrix to echelon form:

[]	1		0						0	
2	.5	0	1	0	$\sim \cdots \sim$	0	1	0	0	
L –	-5	0	0	0		0	0	1	0	

There is no free variable. Thus the columns are linearly independent. Also, the vectors span \mathbb{R}^3 since there is no zero row.

$$(6)$$
 Let

$$A = \begin{bmatrix} -5 & 8 & 0 & -17 & -2 \\ 3 & -5 & 1 & 5 & 1 \\ 11 & -19 & 7 & 1 & 3 \\ 7 & -13 & 5 & -3 & 1 \end{bmatrix}.$$

Find bases and dimensions for Nul A, Col A, and Row A, respectively. Solution:

We reduce A to reduced echelon form:

$$A \sim \dots \sim \begin{bmatrix} 1 & 0 & 0 & 5 & 2 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & -5 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

For Nul A, we solve $A\mathbf{x} = \mathbf{0}$ and obtain

Nul
$$A = \{ r \begin{bmatrix} -5\\ -1\\ 5\\ 1\\ 0 \end{bmatrix} + s \begin{bmatrix} -2\\ -1\\ 0\\ 0\\ 1 \end{bmatrix} \mid r, s \in \mathbb{R} \}.$$

The two vectors form a basis for $\operatorname{Nul} A$.

The first three columns of A contain a pivot. Thus they form a basis

$$B = \begin{pmatrix} -5\\3\\11\\7 \end{bmatrix}, \begin{bmatrix} 8\\-5\\-19\\-13 \end{bmatrix}, \begin{bmatrix} 0\\1\\7\\5 \end{bmatrix})$$

for $\operatorname{Col} A$.

The nonzero rows in any echelon form of A form a basis. E.g.,

$$C = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 5 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ -5 \\ 0 \end{bmatrix})$$

is a basis for $\operatorname{Row} A$.

(7) A 25 × 35 matrix A has 20 pivots. Find dim Nul A, dim Col A, dim Row A, and rank A.

Solution:

The number of pivots, dim Row A, dim Col A, and the rank are equal. So

 $\dim \operatorname{Row} A = \dim \operatorname{Col} A = \operatorname{rank} A = 20.$

By the rank theorem, $\dim \operatorname{Nul} A + \operatorname{rank} A = 35$. Thus

$$\dim \text{Nul}\, A = 35 - 20 = 15.$$

(8) True or false? Explain.

- (a) If B is an echelon form of a matrix A, then the pivot columns of B form a basis for the column space of A.
- (b) If B is an echelon form of a matrix A, then the nonzero rows of B form a basis for the row space of A.
- (c) A basis of B is a set of linear independent vectors in V that is as large as possible.
- (d) If dim V = n, then any *n* vectors that span *V* are linearly independent.
- (e) Every 2-dimensional subspace of \mathbb{R}^2 is a plane.

Solution:

- (a) False! In general the columns of B will not span $\operatorname{Col} A$ any more. The pivot columns of A form a basis for $\operatorname{Col} A$.
- (b) True. The rows of B still span Row A.
- (c) True. If linear independent vectors a_1, \ldots, a_k in V do not span V yet, you can get a bigger linear set by adding a vector a_{k+1} which is not in $\text{Span}\{a_1, \ldots, a_k\}$.

- (d) True by the Basis Theorem. (e) True since any two linear independent vectors in \mathbb{R}^2 span a plane through the origin.