Math 2130 - Assignment 8

Due October 22, 2021

(1) Give 2 different bases for

$$H = \operatorname{Span}\left\{ \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 3\\-1\\0 \end{bmatrix}, \begin{bmatrix} -1\\3\\4 \end{bmatrix} \right\}$$

- (2) Let $B = (b_1, \ldots, b_n)$ be a basis for a vector space V and consider the coordinate mapping $V \to \mathbb{R}^n, x \mapsto [x]_B$.
 - (a) Show that $[c \cdot x]_B = c[x]_B$ for all $x \in V, c \in \mathbb{R}$.
 - (b) Show that the coordinate mapping is onto \mathbb{R}^n .
- (3) Let B = ([1 -2], [-3] , [-3]) be a basis of ℝ².
 (a) Give the change of coordinates matrix P_{E←B} from B to the standard basis E = (e₁, e₂) and P_{B←E}.

(b) Find vectors $u, v \in \mathbb{R}^2$ with $[u]_B = \begin{bmatrix} 0\\1 \end{bmatrix}$, $[v]_B = \begin{bmatrix} 3\\2 \end{bmatrix}$. (c) Compute the coordinates relative to B of $w = \begin{bmatrix} -2\\4 \end{bmatrix}$ and $x = \begin{bmatrix} 1\\0 \end{bmatrix}$. (4) Let $B = (1, t, t^2)$ and $C = (1, 1 + t, 1 + t + t^2)$ be bases of \mathbb{P}_2 . (a) Determine the polynomials p, q with $[p]_B = \begin{bmatrix} 3\\0\\-2 \end{bmatrix}$ and $[q]_C = \begin{bmatrix} 3\\0\\-2 \end{bmatrix}$. (b) Compute $[r]_B$ and $[r]_C$ for $r = 3 + 2t + t^2$. (5) Let $\mathbf{b}_1 = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} 1\\1\\3 \end{bmatrix}$, $\mathbf{b}_3 = \begin{bmatrix} 1\\2.5\\-5 \end{bmatrix}$. (a) Find vectors $\mathbf{u}_1, \dots, \mathbf{u}_k$ such that $(\mathbf{b}_1, \mathbf{b}_2, \mathbf{u}_1, \dots, \mathbf{u}_k)$ is a basis for \mathbb{R}^3 . (b) Find vectors $\mathbf{v}_1, \dots, \mathbf{v}_\ell$ such that $(\mathbf{b}_3, \mathbf{v}_1, \dots, \mathbf{v}_\ell)$ is a basis for \mathbb{R}^3 .

Prove that your choices for (a) and (b) form a basis.

(6) Let

$$A = \begin{bmatrix} -5 & 8 & 0 & -17 & -2 \\ 3 & -5 & 1 & 5 & 1 \\ 11 & -19 & 7 & 1 & 3 \\ 7 & -13 & 5 & -3 & 1 \end{bmatrix}.$$

Find bases and dimensions for Nul A, Col A, and Row A, respectively.

- (7) A 25×35 matrix A has 20 pivots. Find dim Nul A, dim Col A, dim Row A, and rank A.
- (8) True or false? Explain.
 - (a) If B is an echelon form of a matrix A, then the pivot columns of B form a basis for the column space of A.
 - (b) If B is an echelon form of a matrix A, then the nonzero rows of B form a basis for the row space of A.
 - (c) A basis of B is a set of linear independent vectors in V that is as large as possible.
 - (d) If $\dim V = n$, then any *n* vectors that span *V* are linearly independent.
 - (e) Every 2-dimensional subspace of \mathbb{R}^2 is a plane.