Math 2130-Assignment 8

Due October 22, 2021
(1) Give 2 different bases for

$$
H=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
3 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
3 \\
4
\end{array}\right]\right\}
$$

(2) Let $B=\left(b_{1}, \ldots, b_{n}\right)$ be a basis for a vector space V and consider the coordinate mapping $V \rightarrow \mathbb{R}^{n}, x \mapsto[x]_{B}$.
(a) Show that $[c \cdot x]_{B}=c[x]_{B}$ for all $x \in V, c \in \mathbb{R}$.
(b) Show that the coordinate mapping is onto \mathbb{R}^{n}.
(3) Let $B=\left(\left[\begin{array}{c}1 \\ -2\end{array}\right],\left[\begin{array}{c}-3 \\ 4\end{array}\right]\right)$ be a basis of \mathbb{R}^{2}.
(a) Give the change of coordinates matrix $P_{E \leftarrow B}$ from B to the standard basis $E=\left(e_{1}, e_{2}\right)$ and $P_{B \leftarrow E}$.
(b) Find vectors $u, v \in \mathbb{R}^{2}$ with $[u]_{B}=\left[\begin{array}{l}0 \\ 1\end{array}\right],[v]_{B}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.
(c) Compute the coordinates relative to B of $w=\left[\begin{array}{c}-2 \\ 4\end{array}\right]$ and $x=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
(4) Let $B=\left(1, t, t^{2}\right)$ and $C=\left(1,1+t, 1+t+t^{2}\right)$ be bases of \mathbb{P}_{2}.
(a) Determine the polynomials p, q with $[p]_{B}=\left[\begin{array}{c}3 \\ 0 \\ -2\end{array}\right]$ and $[q]_{C}=\left[\begin{array}{c}3 \\ 0 \\ -2\end{array}\right]$.
(b) Compute $[r]_{B}$ and $[r]_{C}$ for $r=3+2 t+t^{2}$.
(5) Let $\mathbf{b}_{1}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right], \mathbf{b}_{3}=\left[\begin{array}{c}1 \\ 2.5 \\ -5\end{array}\right]$.
(a) Find vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ such that $\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$ is a basis for \mathbb{R}^{3}.
(b) Find vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}$ such that $\left(\mathbf{b}_{3}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right)$ is a basis for \mathbb{R}^{3}.

Prove that your choices for (a) and (b) form a basis.
(6) Let

$$
A=\left[\begin{array}{ccccc}
-5 & 8 & 0 & -17 & -2 \\
3 & -5 & 1 & 5 & 1 \\
11 & -19 & 7 & 1 & 3 \\
7 & -13 & 5 & -3 & 1
\end{array}\right]
$$

Find bases and dimensions for $\operatorname{Nul} A, \operatorname{Col} A$, and $\operatorname{Row} A$, respectively.
(7) A 25×35 matrix A has 20 pivots. Find $\operatorname{dim} \operatorname{Nul} A$, $\operatorname{dim} \operatorname{Col} A$, dim Row A, and $\operatorname{rank} A$.
(8) True or false? Explain.
(a) If B is an echelon form of a matrix A, then the pivot columns of B form a basis for the column space of A.
(b) If B is an echelon form of a matrix A, then the nonzero rows of B form a basis for the row space of A.
(c) A basis of B is a set of linear independent vectors in V that is as large as possible.
(d) If $\operatorname{dim} V=n$, then any n vectors that span V are linearly independent.
(e) Every 2-dimensional subspace of \mathbb{R}^{2} is a plane.

