Math 2130 - Assignment 7

Due October 15, 2021
(1) Explain why the following are not subspaces of \mathbb{R}^{2}. Give explicit counter examples for subspace properties that are not satisfied.
(a) $U=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x, y \in \mathbb{R}, x \geq 0\right\}$
(b) $V=\mathbb{Z}^{2}$ (\mathbb{Z} denotes the set of all integers)
(c) $W=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]|x, y \in \mathbb{R},|x|=|y|\}\right.$

Solution:

(a) Not closed under scalar multiples, e.g. $\left[\begin{array}{l}1 \\ 0\end{array}\right] \in U$ but $(-1)\left[\begin{array}{l}1 \\ 0\end{array}\right] \notin U$
(b) Not closed under scalar multiples, e.g. $\left[\begin{array}{l}1 \\ 0\end{array}\right] \in V$ but $\sqrt{2}\left[\begin{array}{l}1 \\ 0\end{array}\right] \notin V$
(c) Not closed under addition, e.g. $\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right] \in W$ but $\left[\begin{array}{l}1 \\ 1\end{array}\right]+\left[\begin{array}{c}1 \\ -1\end{array}\right] \notin W$
(2) Which of the following are subspaces of the vector space $\mathbb{R}^{\mathbb{R}}=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ of all functions from \mathbb{R} to \mathbb{R} ? Check all subspace properties or give one that is not satisfied.
(a) $\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f(0)=1\}$
(b) $\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f(3)=0\}$
(c) $\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ is continuous $\}$

Solution:
(a) No subspace since it does not contain the zero vector, i.e., the constant 0 function.
(b) Subspace since (1) contains the constant 0 -function, (2) is closed under addition [for functions f, g with $f(1)=0$ and $g(1)=0$, also $(f+g)(1)=0+0=0$], (3) is closed under scalar multiples [if $c \in \mathbb{R}$ and $f(1)=0$, then also $(c f)(0)=c 0=0$].
(c) Subspace since (1) the constant 0 -function is continuous, (2) the sum of continuous functions is continuous, (3) any scalar multiple of a continuos function is continuous.
(3) Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be vectors in a vector space V. Show that $U:=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a subspace of V.

Solution:

We show the 3 conditions for being a subspace.
(a) The zero vector can be written as linear combination $\mathbf{0}=0 \mathbf{v}_{1}+\ldots+0 \mathbf{v}_{n}$. Thus $\mathbf{0} \in U$.
(b) Let \mathbf{u} and \mathbf{w} be arbitary vectors in U. We can write these vectors as

$$
\begin{aligned}
\mathbf{u} & =a_{1} \mathbf{v}_{1}+\ldots+a_{n} \mathbf{v}_{n} \\
\mathbf{w} & \text { for some } a_{1}, \ldots, a_{n} \in \mathbb{R}, \\
b_{1} \mathbf{v}_{1}+\ldots+b_{n} \mathbf{v}_{n} & \text { for some } b_{1}, \ldots, b_{n} \in \mathbb{R}
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathbf{u}+\mathbf{w} & =a_{1} \mathbf{v}_{1}+\ldots+a_{n} \mathbf{v}_{n}+b_{1} \mathbf{v}_{1}+\ldots+b_{n} \mathbf{v}_{n} \\
& =\left(a_{1}+b_{1}\right) \mathbf{v}_{1}+\ldots+\left(a_{n}+b_{n}\right) \mathbf{v}_{n}
\end{aligned}
$$

Thus $\mathbf{u}+\mathbf{w}$ is spanned by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and hence an element of U.
(c) Let $\mathbf{u} \in U$ as above, and let $r \in \mathbb{R}$. Then

$$
\begin{aligned}
r \mathbf{u} & =r\left(a_{1} \mathbf{v}_{1}+\ldots+a_{n} \mathbf{v}_{n}\right) \\
& =r a_{1} \mathbf{v}_{1}+\ldots+r a_{n} \mathbf{v}_{n} .
\end{aligned}
$$

Thus $r \mathbf{u}$ is spanned by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and hence an element of U.
(4) Let $A \in \mathbb{R}^{m \times n}$. Prove that $\operatorname{Nul}(A)$ is a subspace of \mathbb{R}^{n}.

Solution:

We show the 3 conditions for being a subspace.
(a) The zero vector is clearly in $\operatorname{Nul}(A)$ since $A \mathbf{0}=\mathbf{0}$.
(b) Let \mathbf{u} and \mathbf{w} be arbitary vectors in $\operatorname{Nul}(A)$. Then $A \mathbf{u}=\mathbf{0}$ and $A \mathbf{w}=\mathbf{0}$. We show that $\mathbf{u}+\mathbf{w}$ is in $\operatorname{Nul}(A)$.

$$
A(\mathbf{u}+\mathbf{w})=A \mathbf{u}+A \mathbf{w}=\mathbf{0}+\mathbf{0}=\mathbf{0}
$$

So $\mathbf{u}+\mathbf{w}$ is in $\operatorname{Nul}(A)$.
(c) Let $r \in \mathbb{R}$. Then

$$
A(r \mathbf{u})=r(A \mathbf{u})=r \mathbf{0}=\mathbf{0}
$$

Hence $r \mathbf{u}$ is in $\operatorname{Nul}(A)$.
(5) Explain whether the following are true or false (give counter examples if possible):
(a) Every vector space is a subspace of itself.
(b) Each plane in \mathbb{R}^{3} is a subspace.
(c) Let U be a subspace of a vector space V. Any linear combination of vectors of U is also in V.
(d) Let v_{1}, \ldots, v_{n} be in a vector space V. Then $\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)$ is the smallest subspace of V containing v_{1}, \ldots, v_{n}.

Solution:

(a) True, since it contains zero vector, is closed under addition and scalar multiples.
(b) False, e.g., the plane $z=1$ does not contain the zero vector.
(c) True, since U is closed under under addition and scalar multiples by definition, U is also closed under linear combinations.
(d) True, by (c) every subspace of V containing v_{1}, \ldots, v_{n} also contains $\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)$ which is a subspace by a previous HW-problem. $\operatorname{So} \operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)$ is the smallest subspace of V containing v_{1}, \ldots, v_{n}.
(6) Are the vectors $\mathbf{v}_{0}=1, \mathbf{v}_{1}=t, \mathbf{v}_{2}=t^{2}$ in the vector space $\mathbb{R}^{\mathbb{R}}:=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ linearly independent?

Solution:

Yes, for real numbers x_{0}, x_{1}, x_{2} the polynomial $x_{0}+x_{1} t+x_{2} t^{2}$ is equal to the constant 0 -function iff $x_{0}=x_{1}=x_{2}=0$.

Alternatively, consider the equation

$$
x_{0}+x_{1} t+x_{2} t^{2}=0
$$

at distinct values for t, e.g., $t=0,1,2$ to obtain the linear system

$$
\begin{aligned}
& x_{0}+0 x_{1}+0^{2} x_{2}=0 \\
& x_{0}+1 x_{1}+1^{2} x_{2}=0 \\
& x_{0}+2 x_{1}+2^{2} x_{2}=0
\end{aligned}
$$

This only has the trivial solution $x_{0}=x_{1}=x_{2}=0$. So $1, t, t^{2}$ are linearly independent.
(7) Which of the following are bases of \mathbb{R}^{3} ? Why or why not?

$$
A=\left(\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]\right), B=\left(\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
4
\end{array}\right]\right), C=\left(\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)
$$

Solution:

A is not a basis because 2 vectors can at most span a plane but not all of \mathbb{R}^{3}.
To check whether B is a basis we have to see whether it spans \mathbb{R}^{3}. Row reduce

$$
\left[\begin{array}{ccc}
1 & 2 & 0 \\
2 & 3 & -1 \\
0 & 4 & 4
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Since we have a 0 -row, the vectors in B do not span \mathbb{R}^{3}. Hence B is not a basis.
To check whether C is a basis we have to see whether it spans \mathbb{R}^{3}. Row reduce

$$
\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 3 & 1 \\
0 & 4 & 4
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 1 \\
0 & 0 & 8
\end{array}\right]
$$

The echelon form has no 0-row. So C spans \mathbb{R}^{3}. Further we see from the echelon form that C is linearly independent. So C is a basis.
(8) Give a basis for $\operatorname{Nul}(A)$ and a basis for $\operatorname{Col}(A)$ for

$$
A=\left[\begin{array}{cccc}
0 & 2 & 0 & 3 \\
1 & -4 & -1 & 0 \\
-2 & 6 & 2 & -3
\end{array}\right]
$$

Solution:

Nul A is the solution set of $A x=0$. So we row reduce A

$$
A=\left[\begin{array}{cccc}
0 & 2 & 0 & 3 \\
1 & -4 & -1 & 0 \\
-2 & 6 & 2 & -3
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -4 & -1 & 0 \\
0 & 2 & 0 & 3 \\
0 & -2 & 0 & -3
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -4 & -1 & 0 \\
0 & 2 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

to get the solution $x_{4}=t, x_{3}=s$ (both free), $x_{2}=-\frac{3}{2} t, x_{1}=s-6 t$. So

$$
x=s\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-6 \\
-\frac{3}{2} \\
0 \\
1
\end{array}\right] \text { and Nul } A \text { has basis }\left(\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-6 \\
-\frac{3}{2} \\
0 \\
1
\end{array}\right]\right)
$$

For a basis of the column space $\operatorname{Col} A$ we pick the pivot columns of A, i.e., the first and second column. So $\operatorname{Col} A$ has basis $\left(\left[\begin{array}{c}0 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{c}2 \\ -4 \\ 6\end{array}\right]\right.$).

