Math 2130 - Assignment 7

Due October 15, 2021
(1) Explain why the following are not subspaces of \mathbb{R}^{2}. Give explicit counter examples for subspace properties that are not satisfied.
(a) $U=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x, y \in \mathbb{R}, x \geq 0\right\}$
(b) $V=\mathbb{Z}^{2}$ (\mathbb{Z} denotes the set of all integers)
(c) $W=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]|x, y \in \mathbb{R},|x|=|y|\}\right.$
(2) Which of the following are subspaces of the vector space $\mathbb{R}^{\mathbb{R}}=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ of all functions from \mathbb{R} to \mathbb{R} ? Check all subspace properties or give one that is not satisfied.
(a) $\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f(0)=1\}$
(b) $\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f(3)=0\}$
(c) $\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ is continuous $\}$
(3) Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be vectors in a vector space V. Show that $U:=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a subspace of V.
(4) Let $A \in \mathbb{R}^{m \times n}$. Prove that $\operatorname{Nul}(A)$ is a subspace of \mathbb{R}^{n}.
(5) Explain whether the following are true or false (give counter examples if possible):
(a) Every vector space is a subspace of itself.
(b) Each plane in \mathbb{R}^{3} is a subspace.
(c) Let U be a subspace of a vector space V. Any linear combination of vectors of U is also in V.
(d) Let v_{1}, \ldots, v_{n} be in a vector space V. Then $\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)$ is the smallest subspace of V containing v_{1}, \ldots, v_{n}.
(6) Are the vectors $\mathbf{v}_{0}=1, \mathbf{v}_{1}=t, \mathbf{v}_{2}=t^{2}$ in the vector space $\mathbb{R}^{\mathbb{R}}:=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ linearly independent?
(7) Which of the following are bases of \mathbb{R}^{3} ? Why or why not?

$$
A=\left(\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]\right), B=\left(\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
4
\end{array}\right]\right), C=\left(\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)
$$

(8) Give a basis for $\operatorname{Nul}(A)$ and a basis for $\operatorname{Col}(A)$ for

$$
A=\left[\begin{array}{cccc}
0 & 2 & 0 & 3 \\
1 & -4 & -1 & 0 \\
-2 & 6 & 2 & -3
\end{array}\right]
$$

