Math 2130-Assignment 6

Due October 8, 2021
(1) Compute the inverse if possible:

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & 2
\end{array}\right], \quad B=\left[\begin{array}{ccc}
-3 & 2 & 4 \\
0 & 1 & -2 \\
1 & -3 & 4
\end{array}\right], \quad C=\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 1 & 1 \\
-1 & 2 & -1
\end{array}\right]
$$

Solution: Since A is not square, it does not have an inverse.
Row reduce $\left[B, I_{3}\right]$:

$$
\left.\begin{array}{r}
{\left[\begin{array}{cccccc}
-3 & 2 & 4 & 1 & 0 & 0 \\
0 & 1 & -2 & 0 & 1 & 0 \\
1 & -3 & 4 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{cccccc}
1 & -3 & 4 & 0 & 0 & 1 \\
0 & 1 & -2 & 0 & 1 & 0 \\
-3 & 2 & 4 & 1 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccccccc}
1 & -3 & 4 & 0 & 0 & 1 \\
0 & 1 & -2 & 0 & 1 & 0 \\
0 & -7 & 16 & 1 & 0 & 3
\end{array}\right]} \\
\\
\sim\left[\begin{array}{ccccccc}
1 & 0 & -2 & 0 & 3 & 1 \\
0 & 1 & -2 & 0 & 1 & 0 \\
0 & 0 & 2 & 1 & 7 & 3
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & 0 & 1 & 10 \\
0 & 1 & 0 & 1 & 8 \\
0 & 0 & 1 & 1 / 2 & 7 / 2
\end{array}\right] / 2
\end{array}\right] \quad .
$$

So

$$
B^{-1}=\left[\begin{array}{ccc}
1 & 10 & 4 \\
1 & 8 & 3 \\
1 / 2 & 7 / 2 & 3 / 2
\end{array}\right] .
$$

For C^{-1} find the reduced echelon form of $\left[C, I_{3}\right]$:
$\left[\begin{array}{cccccc}1 & 0 & 3 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ -1 & 2 & -1 & 0 & 0 & 1\end{array}\right] \sim\left[\begin{array}{cccccc}1 & 0 & 3 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 2 & 2 & 1 & 0 & 1\end{array}\right] \sim\left[\begin{array}{cccccc}1 & 0 & 3 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & -2 & 1\end{array}\right]$
Since the echelon form of C has a zero row, C is not invertible.
(2) Let $A, B \in \mathbb{R}^{n \times n}$ be invertible. Show $(A \cdot B)^{-1}=B^{-1} \cdot A^{-1}$.

Solution: Multiplication yields $A B \cdot B^{-1} A^{-1}=A \cdot I_{n} \cdot A^{-1}=I_{n}$. Hence $B^{-1} \cdot A^{-1}$ is the inverse of $A B$.
(3) A matrix $C \in \mathbb{R}^{n \times m}$ is called a left inverse of a matrix $A \in \mathbb{R}^{m \times n}$ if $C A=I_{n}$ (the $n \times n$ identity matrix).
(a) Show that if A has a left inverse C, then $A x=b$ has a unique solution for any $b \in \mathbb{R}^{n}$.
(b) Give an example of a matrix A that has a left inverse but is not invertible.

Solution:

(a) Multiply $A x=b$ by C on the left to get $C b=C A x=I_{n} x=x$. Hence $x=C b$ is the unique solution of $A x=b$.
(b) E.g. $A=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ has the left inverse $C=\left[\begin{array}{ll}1 & 0\end{array}\right]$ since $C A=[1]$. Still A is not invertible because there is no right inverse B such that $A B=I_{2}$ (alternatively because A is not square).
(4) Prove that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is not invertible if $a d-b c=0$.

Hint: Show that the columns of A are linearly dependent. Consider the cases $a=0$ and $a \neq 0$ separately.
Solution: Assume $a d-b c=0$.

Case, $a=0$: Then $b c=0$ yields $b=0$ or $c=0$. Hence

$$
A=\left[\begin{array}{ll}
0 & 0 \\
c & d
\end{array}\right] \text { or } A=\left[\begin{array}{ll}
0 & b \\
0 & d
\end{array}\right] .
$$

Either way, the columns of A are linearly dependent.
Case, $a \neq 0$: Then $d=\frac{b c}{a}$. Hence

$$
A=\left[\begin{array}{ll}
a & b \\
c & \frac{b c}{a}
\end{array}\right]
$$

and the second column is $\frac{b}{a}$ times the first column. Hence the columns of A are linearly dependent.

By the Inverse Matrix Theorem, a matrix with linearly dependent columns is not invertible.
(5) Let A be an upper triangular matrix, that is,

$$
A=\left[\begin{array}{cccc}
a_{11} & \ldots & \ldots & a_{1 n} \\
0 & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & a_{n n}
\end{array}\right]
$$

with zeros below the diagonal. Show
(a) A is invertible iff there are no zeros in the diagonal of A.
(b) If A^{-1} exists, it is an upper triangular matrix as well.

Hint: When row reducing $\left[A, I_{n}\right]$ to $\left[I_{n}, A^{-1}\right]$, what happens to the n columns on the right?

Solution:

(a) By the Invertible Matrix Theorem A is invertible iff the columns of A are linearly independent.
If the triangular matrix A has no zero diagonal entries, then A is actually in echelon form and its columns are linearly independent (hence A is invertible). Conversely if a diagonal entry of A is 0 , then there is no pivot in this column of the echelon form of A. Hence the columns of A are not linearly independent (and A not invertible).
(b) When row reducing $\left[A, I_{n}\right]$ to $\left[I_{n}, A^{-1}\right]$, we only need to obtain ones in the diagonal of A (by scaling rows) and zeros above the diagonal of A (by adding multiples of one row to rows above). These operations transform I_{n} into an upper triangular matrix A^{-1}.
(6) Assume that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, x \mapsto A \cdot x$, is bijective. Show that $A \in \mathbb{R}^{n \times n}$ is invertible.

Give a formula for the inverse function f^{-1}.
Hint: Use that f is surjective and the Invertible Matrix Theorem.
Solution: Since f is onto, $\operatorname{Col} A=F^{n}$. Since the n columns of $A \operatorname{span} F^{n}$, they form a basis of F^{n} by the Basis Theorem. But if the columns of A form a basis, then A is invertible by the Invertible Matrix Theorem.
$f^{-1}: F^{n} \rightarrow F^{n}, x \mapsto A^{-1} \cdot x$, which can be verified by composing $x \rightarrow A^{-1} x$ with $f: x \rightarrow A x$ and observing that one gets the identity function on F^{n}.
(7) (a) What is the inverse of the rotation R by angle α counter clockwise around the origin in \mathbb{R}^{2} ? What is the standard matrix of R^{-1} ?
(b) What is the inverse of a reflection S on a line through the origin in \mathbb{R}^{2} ? What can you say about the standard matrix B of S and its inverse? You do not have to write down B for this.

Solution:

(a) R^{-1} is just the rotation by α clockwise (or by $-\alpha$ counter clockwise). R has standard matrix

$$
A=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]
$$

and R^{-1} has standard matrix

$$
A^{-1}=\frac{1}{\cos \alpha^{2}+\sin \alpha^{2}}\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right]=\left[\begin{array}{cc}
\cos (-\alpha) & -\sin (-\alpha) \\
\sin (-\alpha) & \cos (-\alpha)
\end{array}\right]
$$

(b) Reflecting twice puts every point x back to itself. Hence any reflection is its own inverse, $S^{-1}=S$. the standard matrix B of S also satisfies $B^{-1}=B$.
(8) True of false? Explain your answer.
(a) If A, B are square matrices with $A B=I_{n}$, then A and B are invertible.
(b) If A is invertible, then A^{T} is invertible.
(c) Let $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$ such that $A x=b$ is inconsistent. Then $\mathbb{R}^{n} \rightarrow$ $\mathbb{R}^{n}, x \mapsto A x$ is not injective.

Solution:

(a) True. By the Invertible Matrix Theorem $A^{-1}=B$ and $B^{-1}=A$.
(b) True. Recall that $(A B)^{T}=B^{T} A^{T}$. Hence $\left(A^{-1}\right)^{T}$ is the inverse of A^{T}.
(c) True. If $A x=b$ is inconsistent, then A does not have a pivot in every row. Since A is square, this means that it does not have a pivot in every column either. So $x \mapsto A x$ is not injective.

