Math 2130-Assignment 6

Due October 8, 2021
(1) Compute the inverse if possible:

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & 2
\end{array}\right], \quad B=\left[\begin{array}{ccc}
-3 & 2 & 4 \\
0 & 1 & -2 \\
1 & -3 & 4
\end{array}\right], \quad C=\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 1 & 1 \\
-1 & 2 & -1
\end{array}\right]
$$

(2) Let $A, B \in \mathbb{R}^{n \times n}$ be invertible. Show $(A \cdot B)^{-1}=B^{-1} \cdot A^{-1}$.
(3) A matrix $C \in \mathbb{R}^{n \times m}$ is called a left inverse of a matrix $A \in \mathbb{R}^{m \times n}$ if $C A=I_{n}$ (the $n \times n$ identity matrix).
(a) Show that if A has a left inverse C, then $A x=b$ has a unique solution for any $b \in \mathbb{R}^{n}$.
(b) Give an example of a matrix A that has a left inverse but is not invertible.
(4) Prove that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is not invertible if $a d-b c=0$.

Hint: Show that the columns of A are linearly dependent. Consider the cases $a=0$ and $a \neq 0$ separately.
(5) Let A be an upper triangular matrix, that is,

$$
A=\left[\begin{array}{cccc}
a_{11} & \ldots & \ldots & a_{1 n} \\
0 & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & a_{n n}
\end{array}\right]
$$

with zeros below the diagonal. Show
(a) A is invertible iff there are no zeros in the diagonal of A.
(b) If A^{-1} exists, it is an upper triangular matrix as well.

Hint: When row reducing $\left[A, I_{n}\right]$ to $\left[I_{n}, A^{-1}\right]$, what happens to the n columns on the right?
(6) Assume that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, x \mapsto A \cdot x$, is bijective. Show that $A \in \mathbb{R}^{n \times n}$ is invertible.

Give a formula for the inverse function f^{-1}.
Hint: Use that f is surjective and the Invertible Matrix Theorem.
(7) (a) What is the inverse of the rotation R by angle α counter clockwise around the origin in \mathbb{R}^{2} ? What is the standard matrix of R^{-1} ?
(b) What is the inverse of a reflection S on a line through the origin in \mathbb{R}^{2} ? What can you say about the standard matrix B of S and its inverse? You do not have to write down B for this.
(8) True of false? Explain your answer.
(a) If A, B are square matrices with $A B=I_{n}$, then A and B are invertible.
(b) If A is invertible, then A^{T} is invertible.
(c) Let $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$ such that $A x=b$ is inconsistent. Then $\mathbb{R}^{n} \rightarrow$ $\mathbb{R}^{n}, x \mapsto A x$ is not injective.

