Math 2130-Assignment 5

Due October 1, 2021
Problems 1-5 are review material for the first midterm on September 29. Solve them before Wednesday!
(1) Let

$$
A=\left[\begin{array}{cccc}
0 & 3 & 1 & 2 \\
1 & 4 & 0 & 7 \\
2 & -1 & -3 & 8
\end{array}\right], b=\left[\begin{array}{c}
6 \\
5 \\
-8
\end{array}\right]
$$

(a) Give the solution for $A x=b$ in parametrized vector form.
(b) Give vectors that span the null space of A.

Solution: (a) Row reduce the augmented matrix

$$
\begin{aligned}
{[A b] } & =\left[\begin{array}{ccccc}
0 & 3 & 1 & 2 & 6 \\
1 & 4 & 0 & 7 & 5 \\
2 & -1 & -3 & 8 & -8
\end{array}\right] \quad \text { (flip rows } 1 \text { and } 2 \text { to eliminate in first column) } \\
& \rightarrow\left[\begin{array}{ccccc}
1 & 4 & 0 & 7 & 5 \\
0 & 3 & 1 & 2 & 6 \\
2 & -1 & -3 & 8 & -8
\end{array}\right] \quad\left(\text { add }(-2)^{*} \text { row } 1 \text { to row } 3\right) \\
& \left.\rightarrow\left[\begin{array}{cccc}
1 & 4 & 0 & 7 \\
0 & 3 & 1 & 2 \\
0 \\
0 & -9 & -3 & -6 \\
-18
\end{array}\right] \text { (add } 3^{*} \text { row } 2 \text { to row } 3\right) \\
& \rightarrow\left[\begin{array}{ccccc}
1 & 4 & 0 & 7 & 5 \\
0 & 3 & 1 & 2 & 6 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Now $x_{4}=t$ and $x_{3}=s$ for $s, t \in \mathbb{R}$ are free. Next

$$
3 x_{2}+s+2 t=6 \text { yields } x_{2}=2-\frac{1}{3} s-\frac{2}{3} t
$$

Finally

$$
x_{1}+4\left(2-\frac{1}{3} s-\frac{2}{3} t\right)+0 s+7 t=5 \text { yields } x_{1}=-3+\frac{4}{3} s-\frac{13}{3} t
$$

Separating the solution into the constant part, multiples of s and of t yields the parametrized vector form

$$
x=\left[\begin{array}{c}
-3 \\
2 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
4 / 3 \\
-1 / 3 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-13 / 3 \\
-2 / 3 \\
0 \\
1
\end{array}\right] \text { for } s, t \in \mathbb{R}
$$

(b) Note that $p=(-3,2,0,0)^{T}$ above is a particular solution of $A x=b$ and that

$$
s\left[\begin{array}{c}
4 / 3 \\
-1 / 3 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-13 / 3 \\
-2 / 3 \\
0 \\
1
\end{array}\right] \text { for } s, t \in \mathbb{R}
$$

is the set of solutions of $A x=0$, i.e. the null space of A. Hence Nul $A=$ $\operatorname{Span}\left\{(4 / 3,-1 / 3,1,0)^{T},(-13 / 3,-2 / 3,0,1)^{T}\right\}$.
(2) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation with

$$
T\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right] \text { and } T\left(\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right)=\left[\begin{array}{c}
0 \\
1 \\
-2
\end{array}\right]
$$

What is the standard matrix of T ?
Solution: Solve 2 linear systems to see how to write the unit vectors as linear combinations of $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}3 \\ 4\end{array}\right]$,

$$
e_{1}=(-2)\left[\begin{array}{l}
1 \\
2
\end{array}\right]+1\left[\begin{array}{l}
3 \\
4
\end{array}\right] \quad e_{2}=\frac{3}{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
3 \\
4
\end{array}\right] .
$$

Next use the linearity of T to get

$$
\begin{gathered}
T\left(e_{1}\right)=(-2) T\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)+1 T\left(\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right)=(-2)\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]+1\left[\begin{array}{c}
0 \\
1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
-4 \\
3 \\
-4
\end{array}\right] \\
T\left(e_{2}\right)=\frac{3}{2}\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
0 \\
1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
3 \\
-2 \\
5 / 2
\end{array}\right] .
\end{gathered}
$$

Now the standard matrix of T is just

$$
A=\left[T\left(e_{1}\right) T\left(e_{2}\right)\right]=\left[\begin{array}{cc}
-4 & 3 \\
3 & -2 \\
-4 & 5 / 2
\end{array}\right]
$$

(3) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, x \mapsto A x$, be a surjective linear map. Show that T is injective as well.
Solution: By a Theorem of class, if T is surjective, then A must have a pivot in every row. Since A is square, it then also has a pivot in every column. But that means that the columns of A are linearly independent and that T is injective by the same Theorem.
(4) True or false? Explain your answer.
(a) If $A x=b$ is inconsistent for some vector b, then A cannot have a pivot in every column.
(b) If vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ are linearly independent and \mathbf{v}_{3} is not in the span of $\mathbf{v}_{1}, \mathbf{v}_{2}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ is linear independent.
(c) The range of $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, x \mapsto A x$, is the span of the columns of A.

Solution:

(a) False. If $A x=b$ is inconsistent for some b, then the echelon form of A must have a zero row. So A cannot have a pivot in the last row. But it can still have pivots in every column if there are more rows than columns.
(b) True. By a Theorem from class, $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly dependent iff one of the vectors is in the span of the previous vectors. Now assume $\mathbf{v}_{1}, \mathbf{v}_{2}$ are linearly independent. Then \mathbf{v}_{1} is not 0 and \mathbf{v}_{2} is not a multiple of \mathbf{v}_{1}. Further assume \mathbf{v}_{3} is not in the span of $\mathbf{v}_{1}, \mathbf{v}_{2}$. Then no \mathbf{v}_{i} is in the span of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}$. Thus $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent.
(c) True. $A x$ is a linear combination of the columns of A, and $T\left(\mathbb{R}^{n}\right)$ is just the set of all these linear combinations, i.e., the span.
(5) (a) Give examples of square matrices A, B such that neither A nor B is 0 (the matrix with all entries 0) but $A B=0$.
(b) If the first two columns of a matrix B are equal, what can you say about the columns of $A B$?
(c) We can view vectors in \mathbb{R}^{n} as $n \times 1$ matrices. For $\mathbf{u}=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right], \mathbf{v}=\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]$ compute $\mathbf{u}^{T} \cdot \mathbf{v}$ and $\mathbf{u} \cdot \mathbf{v}^{T}$. Interpret the results.

Solution:

(a) E.g. $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. Note $A B$ is 0 but $B A$ is not.
(b) If \mathbf{b}_{i} is the i-th column of B, then $A \mathbf{b}_{i}$ is the i-th column of $A B$. So if the first two columns of a matrix B are equal, then the first two columns of $A B$ are equal as well.
(c) $\mathbf{u}^{T} \cdot \mathbf{v}$ is a 1×1-matrix but really just the dot-product of the vectors \mathbf{u} and v . $\mathbf{u} \cdot \mathbf{v}^{T}$ is the 3×3-matrix with single entries of \mathbf{u} and \mathbf{v} multiplied.
(6) Prove for $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with $a d-b c \neq 0$ that

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

Solution: Multiplying $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$ and cancelling $a d-b c$ yields the identity matrix. Hence the given matrix is the inverse of A.
(7) Are the following invertible? Give the inverse if possible.

$$
A=\left[\begin{array}{cc}
2 & 1 \\
4 & -9
\end{array}\right], \quad B=\left[\begin{array}{ll}
2 & -3 \\
4 & -6
\end{array}\right], \quad C=\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 0 & 1 \\
-1 & 0 & -1
\end{array}\right]
$$

Solution:

$$
A^{-1}=\frac{1}{2(-9)-1 \cdot 4}\left[\begin{array}{cc}
-9 & -1 \\
-4 & 2
\end{array}\right], \quad B^{-1} \text { does not exist since } 2(-6)-(-3) 4=0
$$

Since C has a zero column, for every matrix D the product $D C$ has a zero column as well. So $D C$ can never be the identity matrix. Thus C is not invertible.
(8) A diagonal matrix A has all entries 0 except on the diagonal, that is,

$$
A=\left[\begin{array}{cccc}
a_{11} & 0 & \ldots & 0 \\
0 & a_{22} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & a_{n n}
\end{array}\right]
$$

Under which conditions is A invertible and what is A^{-1} ?

Solution: We see that

$$
A^{-1}=\left[\begin{array}{cccc}
a_{11}^{-1} & 0 & \ldots & 0 \\
0 & a_{22}^{-1} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & a_{n n}^{-1}
\end{array}\right]
$$

is the only choice for the inverse of A, and it exists iff all diagonal entries $a_{11}, \ldots, a_{n n}$ are distinct from 0 .

