Math 2130-Assignment 5

Due October 1, 2021
Problems 1-5 are review material for the first midterm on September 29. Solve them before Wednesday!
(1) Let

$$
A=\left[\begin{array}{cccc}
0 & 3 & 1 & 2 \\
1 & 4 & 0 & 7 \\
2 & -1 & -3 & 8
\end{array}\right], b=\left[\begin{array}{c}
6 \\
5 \\
-8
\end{array}\right]
$$

(a) Give the solution for $A x=b$ in parametrized vector form.
(b) Give vectors that span the null space of A.
(2) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation with

$$
T\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right] \text { and } T\left(\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right)=\left[\begin{array}{c}
0 \\
1 \\
-2
\end{array}\right] .
$$

What is the standard matrix of T ?
(3) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, x \mapsto A x$, be a surjective linear map. Show that T is injective as well.
(4) True or false? Explain your answer.
(a) If $A x=b$ is inconsistent for some vector b, then A cannot have a pivot in every column.
(b) If vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ are linearly independent and \mathbf{v}_{3} is not in the span of $\mathbf{v}_{1}, \mathbf{v}_{2}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ is linear independent.
(c) The range of $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, x \mapsto A x$, is the span of the columns of A.
(5) (a) Give examples of square matrices A, B such that neither A nor B is 0 (the matrix with all entries 0) but $A B=0$.
(b) If the first two columns of a matrix B are equal, what can you say about the columns of $A B$?
(c) We can view vectors in \mathbb{R}^{n} as $n \times 1$ matrices. For $\mathbf{u}=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right], \mathbf{v}=\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]$ compute $\mathbf{u}^{T} \cdot \mathbf{v}$ and $\mathbf{u} \cdot \mathbf{v}^{T}$. Interpret the results.
(6) Prove for $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with $a d-b c \neq 0$ that

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

(7) Are the following invertible? Give the inverse if possible.

$$
A=\left[\begin{array}{cc}
2 & 1 \\
4 & -9
\end{array}\right], \quad B=\left[\begin{array}{ll}
2 & -3 \\
4 & -6
\end{array}\right], \quad C=\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 0 & 1 \\
-1 & 0 & -1
\end{array}\right]
$$

(8) A diagonal matrix A has all entries 0 except on the diagonal, that is,

$$
A=\left[\begin{array}{cccc}
a_{11} & 0 & \ldots & 0 \\
0 & a_{22} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & a_{n n}
\end{array}\right]
$$

Under which conditions is A invertible and what is A^{-1} ?

