Math 2130-Assignment 4

Due September 24, 2021
(1) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear map such that

$$
T\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{c}
2 \\
0 \\
-3
\end{array}\right], T\left(\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right)=\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]
$$

(a) Use linearity to find $T\left(e_{1}\right)$ and $T\left(e_{2}\right)$ for the unit vectors e_{1}, e_{2} in \mathbb{R}^{2}.
(b) Give the standard matrix for T and determine $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)$ for arbitrary $x, y \in \mathbb{R}$.

Solution:

(a) First write the unit vectors as linear combinations of $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}3 \\ 2\end{array}\right]$.

Solve

$$
x\left[\begin{array}{l}
1 \\
2
\end{array}\right]+y\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

to get $x=-\frac{1}{2}$ and $y=\frac{1}{2}$. By the linearity of T we obtain

$$
\begin{aligned}
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right. & =T\left(-\frac{1}{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\frac{1}{2}\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right) \\
& =-\frac{1}{2} T\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)+\frac{1}{2} T\left(\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right) \\
& =-\frac{1}{2}\left[\begin{array}{c}
2 \\
0 \\
-3
\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right]
\end{aligned}
$$

Similarly we compute that

$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\frac{3}{4}\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\frac{1}{4}\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

and hence obtain

$$
T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\frac{3}{4}\left[\begin{array}{c}
2 \\
0 \\
-3
\end{array}\right]-\frac{1}{4}\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 / 2 \\
-5 / 2
\end{array}\right]
$$

(b) By (a) we know the standard matrix of T is

$$
A=\left[\begin{array}{cc}
-2 & 2 \\
1 & -1 / 2 \\
2 & -5 / 2
\end{array}\right]
$$

Thus $\left.T\left(\begin{array}{l}x \\ y\end{array}\right]\right)=A \cdot\left[\begin{array}{l}x \\ y\end{array}\right]$.
(2) Is the following injective, surjective, bijective? What is its range?

$$
T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, x \mapsto\left[\begin{array}{ccc}
0 & 2 & -1 \\
0 & 0 & 3
\end{array}\right] \cdot x
$$

Solution: Not injective because x_{1} is free in $A \cdot x=\mathbf{0}$. Alternatively, the columns of A are linearly dependent. So T is not injective (Theorem 12 of Section 1.9).

Surjective because A is in row echelon form and has no 0-rows (Theorem 12 of Section 1.9). Hence its range is just its codomain \mathbb{R}^{2}.

Bijective means injective and surjective. Hence T is not bijective because it is not injective.
(3) Is the following injective, surjective, bijective?

$$
T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, x \mapsto\left[\begin{array}{ccc}
1 & -1 & 2 \\
-2 & 0 & 1 \\
3 & -1 & 1
\end{array}\right] \cdot x
$$

Solution: Row reduce the standard matrix of T to get

1	-1	2	
-2	0	1	
3	-1	1	
1	-1	2	
0	-2	5	$2 I+I I$
0	2	-5	$-3 I+I I I$
1	-1	2	
0	-2	5	
0	0	0	$-I I+I I I$

T is not injective because not every column of the echelon form of A has a pivot. In particular x_{3} is free in $A \cdot x=\mathbf{0}$.
T is not surjective because the echelon form of A has a zero row. Hence $A x=y$ is not consistent for every $y \in \mathbb{R}^{3}$.

Since T is neither injective nor surjective, it is certainly not bijective.
(4) True or False? Explain why and correct the false statements to make them true.
(a) A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is completely determined by the images of the unit vectors in \mathbb{R}^{n}.
(b) Not every linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ can be written as $T(x)=A x$ for some matrix A.
(c) The composition of any two linear transformations is linear as well.

Solution:

(a) True because every vector is a linear combination of unit vectors.
(b) False. Every linear $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ can be written as $T(x)=A x$ for its standard matrix A.
(c) True. If S, T are linear, then

$$
S(T(u+v))=S(T(u)+T(v))=S(T(u)+S(T(v))
$$

for all u, v in the domain of T and

$$
S(T(c u))=S(c T(u))=c S(T(u))
$$

for $c \in \mathbb{R}$. Hence S composed with T is linear.
(5) True or False? Explain why and correct the false statements to make them true.
(a) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto \mathbb{R}^{m} if every vector $x \in \mathbb{R}^{n}$ is mapped onto some vector in \mathbb{R}^{m}.
(b) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if every vector $x \in \mathbb{R}^{n}$ is mapped onto a unique vector in \mathbb{R}^{m}.
(c) A linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ cannot be one-to-one.
(d) There is a surjective linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$.

Solution:

(a) False. Any function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ maps every vector $x \in \mathbb{R}^{n}$ onto some vector $T(x)$ in \mathbb{R}^{m}.
The correct statement is: $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto \mathbb{R}^{m} if for every vector $y \in \mathbb{R}^{m}$ there is some vector $x \in \mathbb{R}^{n}$ such that $T(x)=y$.
(b) False. Any function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ maps every vector $x \in \mathbb{R}^{n}$ onto the unique vector $T(x)$ in \mathbb{R}^{m}.
The correct statement is: $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if any 2 distinct vectors $x_{1}, x_{2} \in \mathbb{R}^{n}$ are mapped to distinct vectors $T\left(x_{1}\right), T\left(x_{2}\right)$.
(c) True. If A is the 2×3 standard matrix of T, then solving $A \cdot x=\mathbf{0}$ will always yield at least one free variable.
(d) False. If A is the 3×4 standard matrix of T, then $A x=y$ cannot have a solution for every $y \in \mathbb{R}^{4}$ since the echelon form of A has at least one zero row.
(6) If defined, compute the following for the matrices

$$
A=\left[\begin{array}{ccc}
2 & 1 & -4 \\
3 & -1 & 1
\end{array}\right], B=\left[\begin{array}{cc}
1 & -1 \\
-3 & 4 \\
2 & 0
\end{array}\right], C=\left[\begin{array}{cc}
-2 & 1 \\
2 & -3
\end{array}\right]
$$

Else explain why the computation is not defined.
(a) $A B$
(b) $B A$
(c) $A C$
(d) $A+C$
(e) $A B+2 C$

Solution:

$A B=\left[\begin{array}{ll}2 \cdot 1+1 \cdot(-3)-4 \cdot 2 & 2 \cdot(-1)+1 \cdot 4-4 \cdot 0 \\ 3 \cdot 1-1 \cdot(-3)+1 \cdot 2 & 3 \cdot(-1)-1 \cdot 4+1 \cdot 0\end{array}\right]=\left[\begin{array}{cc}-9 & 2 \\ 8 & -7\end{array}\right]$
$B A=\left[\begin{array}{ccc}1 \cdot 2-1 \cdot 3 & 1 \cdot 1-1 \cdot(-1) & 1 \cdot(-4)-1 \cdot 1 \\ * & * & * \\ * & * & *\end{array}\right]=\left[\begin{array}{ccc}-1 & 2 & -5 \\ 6 & -7 & 16 \\ 4 & 2 & -8\end{array}\right]$
$A C$ is undefined since the length of A 's rows and the length of C 's columns are not the same.
$A+C$ is undefined since the sizes of A and C don't match.

$$
A B+2 C=\left[\begin{array}{cc}
-9 & 2 \\
8 & -7
\end{array}\right]+\left[\begin{array}{cc}
-4 & 2 \\
4 & -6
\end{array}\right]=\left[\begin{array}{cc}
-13 & 4 \\
12 & -13
\end{array}\right]
$$

(7) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first rotate points around the origin by 60° counter clockwise and then reflect points at the line with equation $y=x$. Give the standard matrix for T.
(a) Recall the standard matrix A for the rotation R by 60° from class.
(b) Determine the standard matrix B for the reflection S at the line with equation $y=x$ (a sketch will help).
(c) Since T is the composition of S and R, compute the standard matrix C of T as the product of B and A. Careful about the order!

Solution:

(a) The standard matrix for the rotation R by $\alpha=60^{\circ}$ is

$$
A=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]
$$

(b) The reflection S at the diagonal flips the unit vectors, i.e., $T\left(e_{1}\right)=e_{2}$ and $T\left(e_{2}\right)=e_{1}$. Hence the standard matrix of S is

$$
B=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

(c) Since $T=S \circ R(S$ after $R)$, its standard matrix is

$$
C=B A=\left[\begin{array}{cc}
\sin \alpha & \cos \alpha \\
\cos \alpha & -\sin \alpha
\end{array}\right]
$$

(8) Continuation of (7): What is the standard matrix for $U: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which first reflects points at the line with equation $y=x$ and then rotates points around the origin by 60° counter clockwise? Compare T and U.
Solution: Since $U=R \circ S(R$ after $R)$, its standard matrix is

$$
A B=\left[\begin{array}{cc}
-\sin \alpha & \cos \alpha \\
\cos \alpha & \sin \alpha
\end{array}\right]
$$

Comparing the result with the standard matrix of $S \circ R$, we see that the result is not the same. Order of function composition and matrix multiplication matters!

