Math 2130 - Assignment 3

Due September 17, 2021

(1) Which of the following sets of vectors are linearly independent?

(a)
$$\begin{bmatrix} 0\\-1\\4 \end{bmatrix}$$
, $\begin{bmatrix} 2\\1\\3 \end{bmatrix}$, $\begin{bmatrix} 1\\0\\-2 \end{bmatrix}$ (b) $\begin{bmatrix} 1\\-3\\2 \end{bmatrix}$, $\begin{bmatrix} 2\\1\\3 \end{bmatrix}$, $\begin{bmatrix} -1\\-11\\0 \end{bmatrix}$

(2) Explain whether the following are true or false:

- (a) Vectors v_1, v_2, v_3 are linearly dependent if v_2 is a linear combination of v_1, v_3 .
- (b) A subset $\{v\}$ containing just a single vector is linearly dependent iff v = 0.
- (c) Two vectors are linearly dependent iff they lie on a line through the origin.
- (d) There exist four vectors in \mathbb{R}^3 that are linearly independent.
- (3) Show: If any of the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ is the zero vector (say $\mathbf{v}_i = 0$ for $i \leq n$), then $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly dependent.
- (4) Show: If n > m, then any n vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n \in \mathbb{R}^m$ are linearly dependent.
- (5) Show that the following maps are not linear by giving concrete vectors for which the defining properties of linear maps are not satisfied.

(a)
$$f : \mathbb{R}^2 \to \mathbb{R}^2, \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x+1 \\ y+3 \end{bmatrix}$$

(b) $g : \mathbb{R}^2 \to \mathbb{R}^2, \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} xy \\ y \end{bmatrix}$
(c) $h : \mathbb{R}^2 \to \mathbb{R}^2, \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} |x|+|y| \\ 2x \end{bmatrix}$

(6) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear map such that

$$T\begin{pmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} -1\\2\\0 \end{bmatrix}, T\begin{pmatrix} 0\\1\\0 \end{bmatrix} = \begin{bmatrix} -3\\0\\1 \end{bmatrix}.$$

Use the linearity of T to compute $T(\begin{bmatrix} 2\\3\\0 \end{bmatrix})$ and $T(\begin{bmatrix} 2\\3\\3 \end{bmatrix})$. What is the issue with the latter?

(7) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear map such that

$$T(\begin{bmatrix} 1\\2 \end{bmatrix}) = \begin{bmatrix} 2\\0\\-3 \end{bmatrix}, \ T(\begin{bmatrix} 3\\2 \end{bmatrix}) = \begin{bmatrix} -2\\2\\1 \end{bmatrix}.$$
(a) Use the linearity of T to find $T(\begin{bmatrix} 1\\0 \end{bmatrix})$ and $T(\begin{bmatrix} 0\\1 \end{bmatrix})$.
(b) Determine $T(\begin{bmatrix} x\\y \end{bmatrix})$ for arbitrary $x, y \in \mathbb{R}$.
(8) Give the standard matrices for the following linear transformations:
(a) $T : \mathbb{R}^2 \to \mathbb{R}^3 \begin{bmatrix} x\\-x \end{bmatrix} \mapsto \begin{bmatrix} 2x+y\\-x \end{bmatrix}$.

(a)
$$T : \mathbb{R}^2 \to \mathbb{R}^3, \begin{bmatrix} \omega \\ y \end{bmatrix} \mapsto \begin{bmatrix} x \\ -x + y \end{bmatrix};$$

(b) the function $C \to \mathbb{R}^2$ that makes be a function of the function

(b) the function S on \mathbb{R}^2 that scales all vectors to half their length.