Review 3: Integers modulo n

Peter Mayr

CU, Discrete Math, April 29, 2020

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Question

Which elements are invertible in \mathbb{Z} ? [Which elements can you divide by?]

1,-1

Question

Which elements are invertible in \mathbb{Z}_n ?

Goal: Solve equations like $[a]_n \cdot x = [c]_n$.

Recall

Let $n \in \mathbb{N}$, n > 1, and $a, b \in \mathbb{Z}$.

Definition

 $a \equiv b \mod n$ (read: *a* is **congruent** to *b* **modulo** *n*) if n|a - b. Alternative notation: $a \equiv_n b$.

1. \equiv_n is an equivalence relation on \mathbb{Z} .

2. The **class** of a mod n is $[a]_n = a + n\mathbb{Z}$.

3. $\mathbb{Z}_n := \{[0]_n, [1]_n, \dots, [n-1]_n\}$ are the integers modulo n.

- 4. $[a] + [b] := [a + b], -[a] := [-a], \text{ and } [a] \cdot [b] := [a \cdot b] \text{ are}$ well-defined on \mathbb{Z}_n and satisfy the same laws as $+, -, \cdot$ on \mathbb{Z} .
- 5. $[1]_n$ is the **multiplicative identity** in \mathbb{Z}_n .
- 6. $[a]_n$ has a multiplicative inverse $[b]_n$ in \mathbb{Z}_n if $[a]_n \cdot [b]_n = 1$. Then $[a]_n$ is invertible.

If $[a]_n$ has inverse $[b]_n$, we can solve $[a]_n \cdot x = [c]_n$ as $x = [b]_n \cdot [c]_n$.

Operation tables on \mathbb{Z}_4

To ease notation we drop the brackets [.] for classes and write 0 for [0].

+	0	1	2	3		0	1	2	3
0	0	1	2	3	0	0	0	0	0
1	1	2	3	0	1	0	1	2	3
2	2	3	0	1	2	0	2	0	2
3	3	0	1	2	3	0	3	2	1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Invertible elements in \mathbb{Z}_4 : 1, 3 $[3 \cdot 3 = 1$, hence 3 is its own inverse.]

General facts about inverses

Lemma (Inverses are unique)

If a is invertible, then it has a unique inverse.

Proof. (cf. left and right inverse of bijective functions) Let b, c be inverses of a. Then

$$b = b1 = b(ac) = (ba)c = 1c = c.$$

The unique inverse of *a* is denoted as a^{-1} .

Lemma (Product of invertible elements is invertible) If *a* and *b* are invertible, then so is *ab*.

Proof. (cf. inverse of composition of bijective functions) $(ab)^{-1} = b^{-1}a^{-1}$ since

$$(ab)b^{-1}a^{-1} = a1a^{-1} = aa^{-1} = 1.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

When is $[a]_n$ in \mathbb{Z}_n invertible?

Theorem

Let $n \in \mathbb{N}$, n > 1, and $a \in \mathbb{Z}$. Then $[a]_n$ is invertible in \mathbb{Z}_n iff gcd(a, n) = 1.

Proof.

$$[a]_n \text{ is invertible iff } \exists x \in \mathbb{Z} : ax \equiv 1 \mod n \qquad (by \text{ definition}) \\ \text{iff } \exists x, y \in \mathbb{Z} : ax + ny = 1 \qquad (by \text{ def of } \equiv_n) \\ \text{iff } \gcd(a, n) = 1. \qquad (by \text{ a previous Thm}) \qquad \Box$$

Corollary

Let p be a prime. Then every element in $\mathbb{Z}_p \setminus \{[0]_p\}$ is invertible.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

The number of invertible elements

Definition (Euler's phi-function) For $n \in \mathbb{N}$, n > 1, define

$$arphi(n) := |\{a \in \mathbb{Z}_n : a ext{ is invertible}\}|$$

= $|\{a \in \{1, \dots, n-1\} : \gcd(a, n) = 1\}$

Example

arphi(4) = 2 arphi(12) = 4 [only 1, 5, 7, 11 have inverses in \mathbb{Z}_{12}] arphi(p) = p - 1 for any prime p.

Euler's Theorem Let $n \in \mathbb{N}$, n > 1, and $a \in \mathbb{Z}$ such that gcd(a, n) = 1. Then

$$a^{\varphi(n)} \equiv 1 \mod n.$$

Proof of Euler's Theorem.

$$I := \{x \in \mathbb{Z}_n : x \text{ is invertible}\}$$

has size $\varphi(n)$.
• Claim: $f: I \to I, x \mapsto [a]_n x$, is bijective.
• Since $\gcd(a, n) = 1$, we have $[a]_n^{-1} \in \mathbb{Z}_n$.
• $I \to I, x \mapsto [a]_n^{-1} x$ is the inverse of f , hence f is bijective.
• So $\prod_{x \in I} x = \prod_{x \in I} f(x) = \prod_{x \in I} ([a]_n x) = [a]_n^{\varphi(n)} \prod_{x \in I} x$
• Multiply
 $\prod_{x \in I} x = [a]_n^{\varphi(n)} \prod_{x \in I} x$
by $(\prod_{x \in I} x)^{-1}$ to get $[1]_n = [a]_n^{\varphi(n)}$.

Corollary (Fermat's Little Theorem) For any prime p and $a \in \mathbb{Z}$,

$$a^p \equiv a \mod p$$
.

Proof.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Corollary (Freshman's Dream) For $x, y \in \mathbb{Z}_p$, $(x + y)^p = x^p + y^p$.

Do you want to know more?

 For applications of Z_n in cryptography and more see Math 3110 – Intro to the Theory of Numbers
 For a general study of algebraic structures like Z_n, polynomials, permutations,...

Math 3140 – Abstract Algebra 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00