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Finally we’ll realize our longterm goal of proving:

The Fundamental Theorem of Arithmetic
Every integer > 1 can be written as a product of primes in a
unique way.



First we generalize Euclid’s Lemma from 2 to n factors.

Lemma
Let n ∈ N, a1, . . . , an ∈ Z, p prime.
If p|a1 · · · an, then p|ai for some i ∈ {1, . . . , n}.

Proof (by induction on n)

I Basis step, n = 1: p|a1 and the statement is true.

I Induction hypothesis: For a fixed k ∈ N, if p|a1 · · · ak , then
p|ai for some i ∈ {1, . . . , k}.

I Induction step: Show the statement follows for n = k + 1.
Assume p| a1 · · · ak︸ ︷︷ ︸

=b

ak+1.

By Euclid’s Lemma, p|b or p|ak+1.
I If p|b, then p|ai for some i ∈ {1, . . . , k} by the induction

assumption.
I Else p|ak+1.

In any case p|a1 or p|a2 or . . . p|ak or p|ak+1. The induction
step is proved and so is the Lemma.



If induction is not strong enough for you any more ...

Theorem
Statement Sn is true for all n ∈ N.

Proof by strong (complete) induction.

1. basis step: Show S1.

2. inductive step: Show S1 ∧ · · · ∧Sk ⇒ Sk+1 for any k ∈ N.

The only difference to usual induction is that you are allowed to
use the

I induction assumption: all S1, . . . ,Sk hold

for proving the induction step.



Example

Which postage values can be obtained with stamps for $3 and $7?

Exactly the values of the form

n = 3x + 7y for x , y ∈ N0

I Base cases. n = 3, 6, 7, 9, 10, 12, 13, 14, . . . can be obtained.

I Conjecture. All n ≥ 12 can be obtained.
We prove this conjecture by strong induction using the base
cases above.

I Assumption for strong induction. All numbers between 12
and some fixed k ≥ 14 can be obtained.

I Induction step. Show k + 1 can be obtained.
k − 2 is ≥ 12 and can be obtained by induction assumption.
So k + 1 = (k − 2) + 3 can.

Note. To get the statement for k + 1, it’s no use that we have it
for k . Hence we need strong induction.



Fundamental Theorem of Arithmetic.

1. Every integer n > 1 has a factorization into primes

n = p1p2 · · · pk .Proof of 1. by strong induction on n.

I Basis step: n = 2 is prime (product of a single prime).

I Induction assumption: For fixed n ∈ N all numbers ≤ n are
products of primes.

I Inductive step: Show n + 1 is a product of primes.
Case, n + 1 prime: n + 1 is the product of a single prime.
Case, n + 1 not prime: Then n + 1 = ab for some
1 < a, b < n + 1. By the (strong) induction assumption

a = p1 · · · pk , b = q1 · · · q`

for some primes p1, . . . , pk , q1, . . . , q`.
Now n + 1 = p1 · · · pkq1 · · · q` is also a product of primes.



Fundamental Theorem of Arithmetic.

1. Every integer n > 1 has a factorization into primes

n = p1p2 · · · pk .

2. This prime factorization of n is unique up to ordering. That
is, if

n = p1p2 · · · pk = q1q2 · · · q`
for primes p1, . . . , pk , q1, . . . , q`, then k = ` and (p1, . . . , pk)
is a permutation of (q1, . . . , qk).

Example

60 = 2 · 2 · 3 · 5 = 2 · 3 · 5 · 2

Same primes, different order.



Fundamental Theorem of Arithmetic.

2. If
n = p1p2 · · · pk = q1q2 · · · q`

for primes p1, . . . , pk , q1, . . . , q`, then k = ` and (p1, . . . , pk)
is a permutation of (q1, . . . , qk).

Proof of 2. by minimal counterexample.

Suppose 2. is false. Then there is some counterexample. Since N is
well-ordered, there must be a minimal (smallest) counterexample n.
Note n > 2 because 2 can be written as a product of primes in
only one way.



Proof of 2. continued
Recall n is minimal such that

n = p1p2 · · · pk = q1q2 · · · q`

for primes p1, . . . , pk and q1, . . . , q` that are not permutations of
each other.

I Since p1|q1q2 · · · q`, by Euclid’s Lemma p1|qi for some i .

I Since qi is prime, p1 = qi .

I Dividing by p1 yields

n

p1
= p2 · · · pk = q1q2 · · · qi−1qi+1 · · · q`.

I p2, . . . , pk and q1, . . . , qi−1, qi+1, . . . , q` are not permutations
of each (else p1, . . . , pk and q1, . . . , q` would be as well).

I n
p1

is a counterexample for 2. that is smaller than n.

But n was the smallest counterexample. Contradiction!
There is no smallest counterexample (no counterexample at all).



Item 2. of the Fundamental Theorem was proved by a special
version of a proof by contradiction combined with induction:

Proof by minimal (smallest) counterexample. To show
that a statement Sn is true for every n ∈ N:

I basis step: Show S1.

I Suppose k > 1 is smallest such that Sk is false. Show
that there exists some smaller ` < k such that S` is
false.



An application of prime factorizations
Find common divisors of

a = 22 · 31 · 53
b = 23 · 30 · 51

22 · 30 · 51 divides a, b, in fact is gcd(a, b)

Let p1 = 2, p2 = 3, p3, . . . be the list of all primes.
Fundamental Theorem of Arithmetic: every a ∈ N has a unique
form

a = pe11 · p
e2
2 · p

e3
3 . . .

with almost all exponents ei ∈ N0 equal to 0.

Lemma
Let a =

∏
i∈N peii , b =

∏
i∈N pfii with ei , fi ∈ N0 for all i ∈ N. Then

1. gcd(a, b) =
∏

i∈N p
min(ei ,fi )
i ,

2. lcm(a, b) =
∏

i∈N p
max(ei ,fi )
i ,

3. gcd(a, b) · lcm(a, b) = ab.



Proof of 1.
Clearly

∏
i∈N p

min(ei ,fi )
i divides a =

∏
i∈N peii and b =

∏
i∈N pfii .

We show that it is the greatest common divisor.

I Assume d =
∏

i∈N pgii is some divisor of a and b.

I Let i ∈ N and gi ≥ 1. Note that pi does not divide a
p
ei
i

by the

Fundamental Theorem of Arithmetic.

I Then pgii cannot divide a
p
ei
i

.

I Since pgii |a, we then get pgii |p
ei
i and gi ≤ ei .

Note that this holds for gi = 0 as well.

I Similarly gi ≤ fi .

I Hence gi ≤ min(ei , fi ).

Hence for any common divisor d of a and b we have

d ≤
∏
i∈N

p
min(ei ,fi )
i

and the latter is the gcd(a, b).


