Prime factorization

Peter Mayr

CU, Discrete Math, March 20 & 30, 2020

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Finally we'll realize our longterm goal of proving:

The Fundamental Theorem of Arithmetic Every integer > 1 can be written as a product of primes in a unique way.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

First we generalize **Euclid's Lemma** from 2 to *n* factors.

Lemma

Let $n \in \mathbb{N}$, $a_1, \ldots, a_n \in \mathbb{Z}$, p prime. If $p|a_1 \cdots a_n$, then $p|a_i$ for some $i \in \{1, \ldots, n\}$.

Proof (by induction on *n*)

Basis step, n = 1: $p|a_1$ and the statement is true.

Induction hypothesis: For a fixed k ∈ N, if p|a₁ ··· a_k, then p|a_i for some i ∈ {1, ..., k}.

▶ Induction step: Show the statement follows for n = k + 1. Assume $p|\underbrace{a_1 \cdots a_k}_{k+1} a_{k+1}$.

By Euclid's Lemma, p|b or $p|a_{k+1}$.

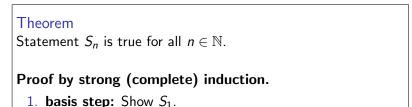
▶ If p|b, then $p|a_i$ for some $i \in \{1, ..., k\}$ by the induction assumption.

Else $p|a_{k+1}$.

In any case $p|a_1$ or $p|a_2$ or $\dots p|a_k$ or $p|a_{k+1}$. The induction step is proved and so is the Lemma.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If induction is not strong enough for you any more ...



2. inductive step: Show $S_1 \wedge \cdots \wedge S_k \Rightarrow S_{k+1}$ for any $k \in \mathbb{N}$.

The only difference to usual induction is that you are allowed to use the

• induction assumption: all S_1, \ldots, S_k hold

for proving the induction step.

Example

Which postage values can be obtained with stamps for \$3 and \$7? Exactly the values of the form

n = 3x + 7y for $x, y \in \mathbb{N}_0$

- **Base cases.** *n* = 3, 6, 7, 9, 10, 12, 13, 14, . . . can be obtained.
- ► Conjecture. All n ≥ 12 can be obtained. We prove this conjecture by strong induction using the base cases above.
- ► Assumption for strong induction. All numbers between 12 and some fixed k ≥ 14 can be obtained.
- Induction step. Show k + 1 can be obtained.
 k 2 is ≥ 12 and can be obtained by induction assumption.
 So k + 1 = (k 2) + 3 can.

Note. To get the statement for k + 1, it's no use that we have it for k. Hence we need **strong induction**.

Fundamental Theorem of Arithmetic.

1. Every integer n > 1 has a factorization into primes

Proof of 1. by strong induction on n. $p_{\pm} p_1 p_2 \cdots p_k$.

- **Basis step:** n = 2 is prime (product of a single prime).
- Induction assumption: For fixed n ∈ N all numbers ≤ n are products of primes.
- Inductive step: Show n + 1 is a product of primes.
 Case, n + 1 prime: n + 1 is the product of a single prime.
 Case, n + 1 not prime: Then n + 1 = ab for some 1 < a, b < n + 1. By the (strong) induction assumption

$$a = p_1 \cdots p_k, \qquad b = q_1 \cdots q_\ell$$

for some primes $p_1, \ldots, p_k, q_1, \ldots, q_\ell$. Now $n + 1 = p_1 \cdots p_k q_1 \cdots q_\ell$ is also a product of primes. \Box

Fundamental Theorem of Arithmetic.

1. Every integer n > 1 has a factorization into primes

 $n=p_1p_2\cdots p_k.$

2. This prime factorization of *n* is unique up to ordering. That is, if

$$n = p_1 p_2 \cdots p_k = q_1 q_2 \cdots q_\ell$$

for primes $p_1, \ldots, p_k, q_1, \ldots, q_\ell$, then $k = \ell$ and (p_1, \ldots, p_k) is a permutation of (q_1, \ldots, q_k) .

Example

$$60 = 2 \cdot 2 \cdot 3 \cdot 5 = 2 \cdot 3 \cdot 5 \cdot 2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Same primes, different order.

Fundamental Theorem of Arithmetic.

2. If

$$n = p_1 p_2 \cdots p_k = q_1 q_2 \cdots q_\ell$$

for primes $p_1, \ldots, p_k, q_1, \ldots, q_\ell$, then $k = \ell$ and (p_1, \ldots, p_k) is a permutation of (q_1, \ldots, q_k) .

Proof of 2. by minimal counterexample.

Suppose 2. is false. Then there is some counterexample. Since \mathbb{N} is well-ordered, there must be a minimal (smallest) counterexample *n*. Note n > 2 because 2 can be written as a product of primes in only one way.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof of 2. continued

Recall n is minimal such that

$$n = p_1 p_2 \cdots p_k = q_1 q_2 \cdots q_\ell$$

for primes p_1, \ldots, p_k and q_1, \ldots, q_ℓ that are not permutations of each other.

- Since $p_1|q_1q_2\cdots q_\ell$, by Euclid's Lemma $p_1|q_i$ for some *i*.
- Since q_i is prime, $p_1 = q_i$.

Dividing by p₁ yields

$$\frac{n}{p_1}=p_2\cdots p_k=q_1q_2\cdots q_{i-1}q_{i+1}\cdots q_\ell.$$

- ▶ p_2, \ldots, p_k and $q_1, \ldots, q_{i-1}, q_{i+1}, \ldots, q_\ell$ are **not** permutations of each (else p_1, \ldots, p_k and q_1, \ldots, q_ℓ would be as well).
- $\frac{n}{p_1}$ is a counterexample for 2. that is smaller than *n*.

But *n* was the smallest counterexample. Contradiction! There is no smallest counterexample (no counterexample at all). Item 2. of the Fundamental Theorem was proved by a special version of a proof by contradiction combined with induction:

Proof by minimal (smallest) counterexample. To show that a statement S_n is true for every $n \in \mathbb{N}$:

- **basis step:** Show S_1 .
- Suppose k > 1 is smallest such that S_k is false. Show that there exists some smaller ℓ < k such that S_ℓ is false.

An application of prime factorizations

Find common divisors of

$$\begin{array}{rl} a=&2^2\cdot 3^1\cdot 5^3\\ b=&2^3\cdot 3^0\cdot 5^1\\ &&2^2\cdot 3^0\cdot 5^1 \end{array} \text{ divides } a,b, \text{ in fact is } \gcd(a,b) \end{array}$$

Let $p_1 = 2, p_2 = 3, p_3, ...$ be the list of all primes. Fundamental Theorem of Arithmetic: every $a \in \mathbb{N}$ has a unique form

$$a = p_1^{e_1} \cdot p_2^{e_2} \cdot p_3^{e_3} \dots$$

with almost all exponents $e_i \in \mathbb{N}_0$ equal to 0.

Lemma

Let $a = \prod_{i \in \mathbb{N}} p_i^{e_i}$, $b = \prod_{i \in \mathbb{N}} p_i^{f_i}$ with e_i , $f_i \in \mathbb{N}_0$ for all $i \in \mathbb{N}$. Then 1. $gcd(a, b) = \prod_{i \in \mathbb{N}} p_i^{min(e_i, f_i)}$, 2. $lcm(a, b) = \prod_{i \in \mathbb{N}} p_i^{max(e_i, f_i)}$, 3. $gcd(a, b) \cdot lcm(a, b) = ab$. Proof of 1. Clearly $\prod_{i \in \mathbb{N}} p_i^{\min(e_i, f_i)}$ divides $a = \prod_{i \in \mathbb{N}} p_i^{e_i}$ and $b = \prod_{i \in \mathbb{N}} p_i^{f_i}$. We show that it is the **greatest** common divisor.

- Assume $d = \prod_{i \in \mathbb{N}} p_i^{g_i}$ is some divisor of *a* and *b*.
- ▶ Let $i \in \mathbb{N}$ and $g_i \ge 1$. Note that p_i does not divide $\frac{a}{p_i^{e_i}}$ by the Fundamental Theorem of Arithmetic.

• Then
$$p_i^{g_i}$$
 cannot divide $\frac{a}{p_i^{e_i}}$

- Since p^{g_i}_i|a, we then get p^{g_i}_i|p^{e_i}_i and g_i ≤ e_i. Note that this holds for g_i = 0 as well.
- Similarly $g_i \leq f_i$.
- Hence $g_i \leq \min(e_i, f_i)$.

Hence for any common divisor d of a and b we have

$$d \leq \prod_{i \in \mathbb{N}} p_i^{\min(e_i, f_i)}$$

and the latter is the gcd(a, b).

$\blacktriangleleft \square \flat$	< ⊡ >	${}^{*} \in \Xi \rightarrow$	★国≯	æ.,	$\mathcal{O} \land \mathcal{O}$