Math 2001 - Assignment 12

Due April 17, 2018

- (1) (a) Give domain, codomain, and range of $f: \mathbb{Z} \to \mathbb{N}, x \mapsto x^2 + 1$. What is f(3)?
 - (b) Is f one-to-one, onto, bijective?
 - (c) Determine $f(\{2x : x \in \mathbb{Z}\})$ and $f^{-1}(\{1, 2, 3, \dots, 10\})$.
- (2) Give examples for
 - (a) a function $f: \mathbb{N} \to \mathbb{N}$ that is not injective but surjective;
 - (b) a function $g: \{1, 2, 3\} \rightarrow \{1, 2\}$ that is neither injective nor surjective;
 - (c) a bijective function $h: \{1, 2, 3\} \rightarrow \{1, 2\}$.
- (3) Let A, B be finite sets with |A| = |B|, and let $f \colon A \to B$. Show that f is injective iff f is surjective.

Is this true for functions between infinite sets as well? Prove it or give counterexamples for each direction.

- (4) Prove or give counterexamples:
 - (a) The composition of two injective functions is injective.
 - (b) The composition of two surjective functions is surjective.
- (5) Let $f: A \to B, g: B \to C$. Show that
 - (a) If $g \circ f$ is injective, then f is injective.
 - (b) If $g \circ f$ is surjective, then g is surjective.

Hint: Use contrapositive proofs.

Give examples for f, g on $A = B = C = \mathbb{N}$ such that

- (c) $g \circ f$ is injective but g is not injective;
- (d) $g \circ f$ is surjective but f is not surjective.
- (6) (a) Show that

$$f: \mathbb{R} - \{1\} \to \mathbb{R} - \{2\}, x \mapsto \frac{2x+1}{x-1}$$

is bijective.

(b) Determine f^{-1} .