Math 2001 - Assignment 11

Due April 10, 2020

- (1) Prove or disprove that the following relations are reflexive, symmetric, antisymmetric, transitive. Which are equivalences, which partial orders?
 - (a) \neq on \mathbb{Z}
 - (b) \subseteq on the power set P(A) of a set A
- (2) Prove or disprove that the following relations are reflexive, symmetric, antisymmetric, transitive. Which are equivalences, which partial orders?
 - (a) | (divides) on \mathbb{N}
 - (b) $R = \{(x, y) \in \mathbb{R} : |x y| \le 1\}$
- (3) List the equivalence classes for these equivalence relations:
 - (a) The relation ~ on subsets A, B of $\{1, 2, 3\}$ where $A \sim B$ if |A| = |B|.
 - (b) $R = \{(x, y) \in \mathbb{Z} : |x| = |y|\}$ on \mathbb{Z}
- (4) (a) Given finite sets A and B. How many different relations are there from A to B?
 - (b) How many different equivalence relations are there on $A = \{1, 2, 3\}$? Describe them all by listing the partitions of A.
- (5) Let \sim be an equivalence relation on a set A, let $a, b \in A$. Let [a] denote the equivalence class of a modulo \sim . Show that

$$a \not\sim b$$
 iff $[a] \cap [b] = \emptyset$

- (6) (a) Give the tables for addition and multiplication for \mathbb{Z}_6 .
 - (b) Dividing by [a] in \mathbb{Z}_n means solving an equation $[a] \cdot [x] = [1]$ for [x].
 - Solve $[8] \cdot [x] = [1]$ in \mathbb{Z}_{37} .

Hint: Use the Euclidean algorithm to solve $8x \equiv 1 \mod 37$.