Math 2001 - Assignment 8

Due March 13, 2020

- (1) Read Section 5.3 in [1].
- (2) Solve the following for $u, v \in \mathbb{Z}$: (a) 33u + 10v = -5 (b) 44u + 10v = 5
- (3) Let $a, b, c \in \mathbb{Z}$ with a, b not both 0. Show that

 $\exists u, v \in \mathbb{Z} \colon u \cdot a + v \cdot b = c \text{ iff } \gcd(a, b) | c.$

Hint: There are 2 implications to show:

(a) If $u \cdot a + v \cdot b = c$, then gcd(a, b)|c.

(b) If gcd(a, b)|c, then there are $u, v \in \mathbb{Z}$ such that $u \cdot a + v \cdot b = c$. Use Bezout's identity!

(4) Two integers have the same parity if both are even or both are odd. Otherwise they have opposite parity.
Let a, b ∈ Z. Show that if a + b is even, then a, b have the

Let $a, b \in \mathbb{Z}$. Show that if a + b is even, then a, b have the same parity.

Hint: Use a contrapositive proof.

- (5) Show for all $a \in \mathbb{Z}$: If a^2 is even, then a is even. Hint: Which type of proof is the best to use?
- (6) Complete the following proof of **Euclid's Lemma:** Let p be a prime, $a, b \in \mathbb{Z}$. If p|ab, then p|a or p|b.

Proof: Assume _____ but $p \not\mid a$. We will show p|b. By Bezout's identity we have $u, v \in \mathbb{Z}$ such that

 $\underline{\qquad} = \gcd(a, p).$

Since p is _____ and $p \not| a$, we have gcd(a, p) =____. Hence

 $ua + vp = ____.$

Multiplying this equation by _____ yields

 $_$ = b

Since p|_____, we have a multiple of p on the left hand side of this equation. Thus _____.

Please hand in this sheet of paper with your solution of 6.

[1] Richard Hammack. The Book of Proof. Creative Commons, 3rd edition, 2018.