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Implications
Let P, Q be statements.

’ statement ‘ equivalent meanings ‘ negation ‘
P=Q If Pis true, then Qis true.
~PVQ PA~Q

~ @ =~ P (contrapositive)
P& @ Qs true if and only if Pis true. | P &~ @
(P=Q AN(P<=Q) ~P&Q

How to prove P = Q:

» direct: Assume P. Show Q.
> contrapositive: Assume ~ Q. Show ~ P.

» by contradiction (only as last resort): Assume P and ~ Q.
Show some contradiction.

How to prove P < Q:
Show P = @ and show P < Q.



Equivalence: an application in Linear Algebra

Theorem
Let A be an n x n-matrix over R. Then the following are
equivalent (TFAE):

1. Ais invertible.
2. Ax = b has a unique solution for every b € R".
3. Ax = 0 has only the trivial solution.
4. det A #0.
5. 0 is not an eigenvalue of A.
This Theorem states that 1. & 2. & 3. & 4. & 5.

Instead of showing 4 times <, such statements can be proved
more efficiently as a cycle of implications:

1.=2.=3=4=5 =1

» Do you want to know more? Take Math 2135 — Linear Algebra



Quantified statements
Let A be a set, P(x) be a statement for x € A.

’ statement ‘ meaning ‘ negation

Vx € A: P(x) | For allx € A, P(x)is true. | P(x)is not true for some x € A.
Ix e A: ~ P(x)

dx € A: P(x) | There exists x € A P(x) is not true for all x € A.
such that P(x) is true. Vx € A: ~ P(x)

How to prove Vx € A: P(x)
Let x € A (arbitrary but fixed). Show P(x).

How to refute Vx € A: P(x)
Give concrete explicit x € A that does not satisfy P(x).

How to prove Ix € A: P(x)
Give a concrete explicit x € A that satisfies P(x).

How to refute 3x € A: P(x)
Show Vx € A: ~ P(x).



Quantifiers and implications in
Calculus



Calculus: Informally limy_,c f(x) = L means that f(x) is
arbitrarily close to L provided that x is sufficiently close to c.
More precisely

Definition (Limit of a function)
Let f: R — R and c € R. Then limy_,f(x)=Lif

Vee RT I e RT YxeR—{c}: |x—c|<é=|f(x)-Ll<e

Diagram taken from Hammack, Book of Proof, 2018.
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How to prove
Vee RT3 eRTVxeR: |x—c|<d=|f(x)—L|<e

Example
Prove lim,_sg 2xsin(%) =0.
> Let € > 0 arbitrary, fixed for the remainder of the proof.

» Goal: Find § > 0 (6 may depend on ¢) such that
Ix —c| <d=|f(x)— Ll <e.

» Consider

.1 .1

|f(x) — L| = |2xsin(=) — 0] = 2|x||sin(—)| < 2|x]
X X
<1

» The latter is < ¢ if |x| < g/2.
» Hence § :=¢/2 yields [x — 0| < d = |f(x) — 0| < e.
> Thus lim,_,02xsin(1) = 0.



How to prove a limit does not exist?
We need to show that for all L € R,

~ (Ve €eRTIF€eRTVx e R—{c}: |x—c| <= |f(x)—L]| <e),
equivalently,

VLERIe e RT VI € RT Ix € R—{c}: |x—c| <4 and |f(x)—L| > e.

Example
Prove IimX_>0% does not exist.
> Let L € R, fixsay e : =1,
let & be arbitrary.
» Want x e R: |[x — 0| <6 and 4
X — Ll >e
> E.g., let n € N such that x := L}rn <6 N N
Then |f(x) =L =|(L+n)—L=n>1.
> Thus limy_,0 £ cannot be any L € R.




Sum rule for limits
Theorem
If limy_c f(x) and limy_, g(x) both exist, then
lim (f(x) + g(x)) = lim f(x) + lim g(x).

X—C X—C X—C

Proof.

» Let limy_c f(x) = L and limy_c g(x) = M. Show
limy—c(F(x) +g(x)) =L+ M.

» Let € > 0 arbitrary. Find § > 0 such that
Ix—c|<d=|f(x)+g(x)—L—-M|<e.

> Note |f(x)+ g(x) — L — M| <|f(x) — L] + |g(x) — M.

» Since limy_,c f(x) and limy_,c g(x) exist, we have
01 > 0 such that [x — c| < d1 = [f(x) = L| < 5,
62 > 0 such that [x — c| < 62 = [g(x) — M| < 5.

> Then |x — c| < min(d1,02) = |F(x) +g(x) = L— M| < = + £

=5

=£



» Do you want to know more? Take Math 3001 — Analysis



