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Implications
Let P,Q be statements.

statement equivalent meanings negation

P ⇒ Q IfP is true, thenQ is true.
∼ P ∨ Q P∧ ∼ Q
∼ Q ⇒∼ P (contrapositive)

P ⇔ Q Q is true if and only ifP is true. P ⇔∼ Q
(P ⇒ Q) ∧ (P ⇐ Q) ∼ P ⇔ Q

How to prove P ⇒ Q:

I direct: Assume P. Show Q.

I contrapositive: Assume ∼ Q. Show ∼ P.

I by contradiction (only as last resort): Assume P and ∼ Q.
Show some contradiction.

How to prove P ⇔ Q:

Show P ⇒ Q and show P ⇐ Q.



Equivalence: an application in Linear Algebra

Theorem
Let A be an n × n-matrix over R. Then the following are
equivalent (TFAE):

1. A is invertible.

2. Ax = b has a unique solution for every b ∈ Rn.

3. Ax = 0 has only the trivial solution.

4. detA 6= 0.

5. 0 is not an eigenvalue of A.

This Theorem states that 1.⇔ 2.⇔ 3.⇔ 4.⇔ 5.
Instead of showing 4 times ⇔, such statements can be proved
more efficiently as a cycle of implications:

1.⇒ 2.⇒ 3.⇒ 4.⇒ 5.⇒ 1.

I Do you want to know more? Take Math 2135 – Linear Algebra



Quantified statements
Let A be a set, P(x) be a statement for x ∈ A.

statement meaning negation

∀x ∈ A : P(x) For all x ∈ A,P(x) is true. P(x) is not true for some x ∈ A.
∃x ∈ A : ∼ P(x)

∃x ∈ A : P(x) There exists x ∈ A P(x) is not true for all x ∈ A.
such that P(x) is true. ∀x ∈ A : ∼ P(x)

How to prove ∀x ∈ A : P(x)

Let x ∈ A (arbitrary but fixed). Show P(x).

How to refute ∀x ∈ A : P(x)

Give concrete explicit x ∈ A that does not satisfy P(x).

How to prove ∃x ∈ A : P(x)

Give a concrete explicit x ∈ A that satisfies P(x).

How to refute ∃x ∈ A : P(x)

Show ∀x ∈ A : ∼ P(x).



Quantifiers and implications in
Calculus



Calculus: Informally limx→c f (x) = L means that f (x) is
arbitrarily close to L provided that x is sufficiently close to c .
More precisely

Definition (Limit of a function)

Let f : R→ R and c ∈ R. Then limx→c f (x) = L if

∀ε ∈ R+ ∃δ ∈ R+ ∀x ∈ R− {c} : |x − c | < δ ⇒ |f (x)− L| < ε

Diagram taken from Hammack, Book of Proof, 2018.

Definition of a Limit 247

Standard practice uses the Greek letters ε (epsilon) and δ (delta) for
variables representing how close f (x) is to L, and x is to c. For instance,
x is within a distance of δ from c if and only if c − δ < x < c + δ, that is,
−δ < x− c < δ, or |x− c| < δ. So for any real number δ > 0 (no matter how
small) the statement |x− c| < δ means that x is within δ units from c.

c−δ c x c+δ

δ� �� � δ� �� �

Likewise | f (x)−L| < ε means that f (x) is within ε units from L. Let’s apply
these ideas to Definition 13.1, and transform it line by line.

Informal definition Precise definition
lim
x→c

f (x)= L means that lim
x→c

f (x)= L means that
f (x) is arbitrarily close to L for any ε> 0, | f (x)−L| < ε

provided that provided that
x is sufficiently close to c 0< |x− c| < δ for some δ> 0.

We have arrived at a precise definition of a limit.

Definition 13.2 (Precise definition of a limit)
Suppose f : X →R is a function, where X ⊆R, and c ∈R. Then lim

x→c
f (x)= L

means that for any real ε> 0 (no matter how small), there is a real number
δ> 0 for which | f (x)−L| < ε provided that 0< |x− c| < δ.

Figure 13.1 illustrates this. For any ε> 0, no matter how small, consider
the narrow shaded band of points on the plane whose y-coordinates are
between y = L−ε and y = L+ε. Given this ε, we can find another number
δ> 0 such that the point (x, f (x)) is in the shaded band whenever x is within
δ units from c. In other words, | f (x)−L| < ε provided that 0< |x− c| < δ.
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Figure 13.1. A graphic description of the limit definition.
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How to prove
∀ε ∈ R+ ∃δ ∈ R+ ∀x ∈ R : |x − c | < δ ⇒ |f (x)− L| < ε

Example

Prove limx→0 2x sin( 1
x ) = 0.

I Let ε > 0 arbitrary, fixed for the remainder of the proof.

I Goal: Find δ > 0 (δ may depend on ε) such that
|x − c | < δ ⇒ |f (x)− L| < ε.

I Consider

|f (x)− L| =

∣∣∣∣2x sin(
1

x
)− 0

∣∣∣∣ = 2|x | | sin(
1

x
)|︸ ︷︷ ︸

≤1

≤ 2|x |

I The latter is < ε if |x | < ε/2.

I Hence δ := ε/2 yields |x − 0| < δ ⇒ |f (x)− 0| < ε.

I Thus limx→0 2x sin( 1
x ) = 0.



How to prove a limit does not exist?
We need to show that for all L ∈ R,

∼ (∀ε ∈ R+ ∃δ ∈ R+ ∀x ∈ R−{c} : |x−c | < δ ⇒ |f (x)−L| < ε),

equivalently,

∀L ∈ R ∃ε ∈ R+ ∀δ ∈ R+ ∃x ∈ R−{c} : |x−c| < δ and |f (x)−L| ≥ ε.

Example
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6Prove limx→0
1
x does not exist.

I Let L ∈ R, fix say ε := 1,
let δ be arbitrary.

I Want x ∈ R : |x − 0| < δ and
| 1x − L| ≥ ε.

I E.g., let n ∈ N such that x := 1
L+n < δ.

Then |f (x)− L| = |(L + n)− L| = n ≥ 1.

I Thus limx→0
1
x cannot be any L ∈ R.



Sum rule for limits

Theorem
If limx→c f (x) and limx→c g(x) both exist, then

lim
x→c

(f (x) + g(x)) = lim
x→c

f (x) + lim
x→c

g(x).

Proof.

I Let limx→c f (x) = L and limx→c g(x) = M. Show
limx→c(f (x) + g(x)) = L + M.

I Let ε > 0 arbitrary. Find δ > 0 such that
|x − c | < δ ⇒ |f (x) + g(x)− L−M| < ε.

I Note |f (x) + g(x)− L−M| ≤ |f (x)− L|+ |g(x)−M|.
I Since limx→c f (x) and limx→c g(x) exist, we have
δ1 > 0 such that |x − c | < δ1 ⇒ |f (x)− L| < ε

2 ,
δ2 > 0 such that |x − c | < δ2 ⇒ |g(x)−M| < ε

2 .

I Then |x − c | < min(δ1, δ2)︸ ︷︷ ︸
=:δ

⇒ |f (x) + g(x)− L−M| < ε

2
+
ε

2︸ ︷︷ ︸
=ε

.



I Do you want to know more? Take Math 3001 – Analysis


