Review 2: Logic

Peter Mayr

CU, Discrete Math, April 27, 2020

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Implications

Let P, Q be statements.

statement	equivalent meanings	negation	
$P \Rightarrow Q$	If <i>P</i> is true, then <i>Q</i> is true.		
	$\sim {\sf P} ee Q$	$ P \wedge \sim Q $	
	$\sim Q \Rightarrow \sim P$ (contrapositive)		
$P \Leftrightarrow Q$	Q is true if and only if P is true.	$ \begin{array}{c} P \Leftrightarrow \sim Q \\ \sim P \Leftrightarrow Q \end{array} $	
	$(P \Rightarrow Q) \land (P \Leftarrow Q)$	$\sim P \Leftrightarrow Q$	

How to prove $P \Rightarrow Q$:

- **direct:** Assume *P*. Show *Q*.
- contrapositive: Assume $\sim Q$. Show $\sim P$.
- ▶ by contradiction (only as last resort): Assume P and ~ Q. Show some contradiction.

How to prove $P \Leftrightarrow Q$: Show $P \Rightarrow Q$ and show $P \Leftarrow Q$.

Equivalence: an application in Linear Algebra

Theorem

Let A be an $n \times n$ -matrix over \mathbb{R} . Then the following are equivalent (TFAE):

- 1. A is invertible.
- 2. Ax = b has a unique solution for every $b \in \mathbb{R}^n$.
- 3. Ax = 0 has only the trivial solution.
- 4. det $A \neq 0$.
- 5. 0 is not an eigenvalue of A.

This Theorem states that $1. \Leftrightarrow 2. \Leftrightarrow 3. \Leftrightarrow 4. \Leftrightarrow 5$. Instead of showing 4 times \Leftrightarrow , such statements can be proved more efficiently as a cycle of implications:

$$1. \Rightarrow 2. \Rightarrow 3. \Rightarrow 4. \Rightarrow 5. \Rightarrow 1.$$

Do you want to know more? Take Math 2135 – Linear Algebra

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Quantified statements

Let A be a set, P(x) be a statement for $x \in A$.

statement	meaning	negation
$\forall x \in A \colon P(x)$	For all $x \in A$, $P(x)$ is true.	$P(x)$ is not true for some $x \in A$.
		$\exists x \in A: \sim P(x)$
$\exists x \in A: P(x)$	There exists $x \in A$	$P(x)$ is not true for all $x \in A$.
	such that $P(x)$ is true.	$\forall x \in A: \ \sim P(x)$

How to prove $\forall x \in A \colon P(x)$

Let $x \in A$ (arbitrary but fixed). Show P(x).

How to refute $\forall x \in A \colon P(x)$

Give concrete explicit $x \in A$ that does not satisfy P(x).

How to prove $\exists x \in A : P(x)$

Give a concrete explicit $x \in A$ that satisfies P(x).

How to refute $\exists x \in A : P(x)$ Show $\forall x \in A : \sim P(x)$.

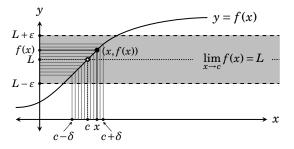
Quantifiers and implications in Calculus

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Calculus: Informally $\lim_{x\to c} f(x) = L$ means that f(x) is arbitrarily close to L provided that x is sufficiently close to c. More precisely

Definition (Limit of a function) Let $f : \mathbb{R} \to \mathbb{R}$ and $c \in \mathbb{R}$. Then $\lim_{x\to c} f(x) = L$ if $\forall \varepsilon \in \mathbb{R}^+ \exists \delta \in \mathbb{R}^+ \forall x \in \mathbb{R} - \{c\} : |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon$

Diagram taken from Hammack, Book of Proof, 2018.



How to prove $\forall \varepsilon \in \mathbb{R}^+ \exists \delta \in \mathbb{R}^+ \forall x \in \mathbb{R}: |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon$

Example

Prove $\lim_{x\to 0} 2x \sin(\frac{1}{x}) = 0$.

• Let $\varepsilon > 0$ arbitrary, fixed for the remainder of the proof.

► Goal: Find $\delta > 0$ (δ may depend on ε) such that $|x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon$.

Consider

$$|f(x) - L| = \left| 2x \sin\left(\frac{1}{x}\right) - 0 \right| = 2|x| \underbrace{|\sin\left(\frac{1}{x}\right)|}_{\leq 1} \leq 2|x|$$

The latter is < ε if |x| < ε/2.
Hence δ := ε/2 yields |x - 0| < δ ⇒ |f(x) - 0| < ε.
Thus lim_{x→0} 2x sin(¹/_x) = 0.

How to prove a limit does not exist?

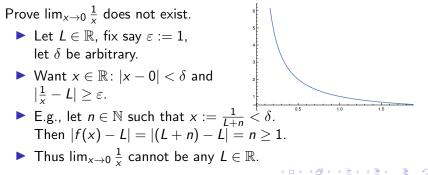
We need to show that for all $L \in \mathbb{R}$,

 $\sim (\forall \varepsilon \in \mathbb{R}^+ \exists \delta \in \mathbb{R}^+ \forall x \in \mathbb{R} - \{c\} \colon |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon),$

equivalently,

 $\forall L \in \mathbb{R} \ \exists \varepsilon \in \mathbb{R}^+ \ \forall \delta \in \mathbb{R}^+ \ \exists x \in \mathbb{R} - \{c\} \colon \ |x - c| < \delta \text{ and } |f(x) - L| \ge \varepsilon.$

Example



Sum rule for limits

Theorem

If $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ both exist, then

$$\lim_{x\to c} (f(x) + g(x)) = \lim_{x\to c} f(x) + \lim_{x\to c} g(x).$$

Proof.

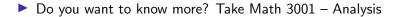
Let $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$. Show $\lim_{x\to c} (f(x) + g(x)) = L + M.$

► Let
$$\varepsilon > 0$$
 arbitrary. Find $\delta > 0$ such that $|x - c| < \delta \Rightarrow |f(x) + g(x) - L - M| < \varepsilon$.

• Note $|f(x) + g(x) - L - M| \le |f(x) - L| + |g(x) - M|$.

Since
$$\lim_{x\to c} f(x)$$
 and $\lim_{x\to c} g(x)$ exist, we have $\delta_1 > 0$ such that $|x-c| < \delta_1 \Rightarrow |f(x) - L| < \frac{\varepsilon}{2}$, $\delta_2 > 0$ such that $|x-c| < \delta_2 \Rightarrow |g(x) - M| < \frac{\varepsilon}{2}$.

Then
$$|x-c| < \underbrace{\min(\delta_1, \delta_2)}_{=:\delta} \Rightarrow |f(x) + g(x) - L - M| < \underbrace{\frac{\varepsilon}{2} + \frac{\varepsilon}{2}}_{=:\delta}.$$



<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ