Induction

Peter Mayr

CU, Discrete Math, March 18, 2020

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Example

Compute the sum of the first *n* odd positive integers:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

n		
1	1	= 1
2	1 + 3	= 4
3	1 + 3 + 5	= 9
4	1 + 3 + 5 + 7	= 16
:		
•		

Conjecture

$$1 + 3 + 5 + \dots + (2n - 1) = n^2$$

Question

How to prove this?

Let S_n be a statement (depending on $n \in \mathbb{N}$), e.g., $1+3+5+\cdots+(2n-1)=n^2$.

```
Theorem S_n is true for all n \in \mathbb{N}.
```

Induction proof.

- 1. **basis step:** Show S_1 .
- 2. inductive step: Show $S_k \Rightarrow S_{k+1}$ for any $k \in \mathbb{N}$.

This shows that S_n is true for every $n \in \mathbb{N}$ because: By basis step, S_1 is true. By inductive step, $S_1 \Rightarrow S_2$; so S_2 is true. $S_2 \Rightarrow S_3$; so S_3 is true. $S_3 \Rightarrow S_4$ \vdots By this domino effect, all S_n are true!

Theorem For all $n \in \mathbb{N}$,

$$\sum_{i=1}^{n} (2i-1) = n^2.$$

Proof (by induction)

- **Basis step,** n = 1: $2 \cdot 1 1 = 1^2$ holds
- ▶ Induction assumption, S_k holds for some fixed k: $\sum_{i=1}^{k} (2i-1) = k^2$

Induction step, S_{k+1} follows:

$$\sum_{i=1}^{k+1} (2i-1) = \sum_{i=1}^{k} (2i-1) + (2k+1)$$

= $k^2 + 2k + 1$ by induction assumption
= $(k+1)^2$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

This proves $S_k \Rightarrow S_{k+1}$, hence the Theorem

If induction is not strong enough for you any more ...

Binomial Theorem

For all $n \in \mathbb{N}_0$,

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i.$$

Proof (by induction on *n*)

- ▶ Basis step, n = 0: $(x + y)^0 = 1 = {0 \choose 0} x^0 y^0$ holds
- ▶ Induction assumption, formula holds for fixed *n* = *k*:
- **•** Induction step, show the formula for n = k + 1 follows:

$$\begin{aligned} & (x+y)^{k+1} \\ &= (x+y)^k \cdot (x+y) \\ &= \left[\binom{k}{0} x^k y^0 + \binom{k}{1} x^{k-1} y^1 + \binom{k}{2} x^{k-2} y^2 + \dots + \binom{k}{k} x^0 y^k \right] (x+y) \\ &= \binom{k}{0} x^{k+1} y^0 + \binom{k}{1} x^k y^1 + \binom{k}{2} x^{k-1} y^2 + \dots + \binom{k}{k} x^1 y^k \\ &\qquad + \binom{k}{0} x^k y^1 + \binom{k}{1} x^{k-1} y^2 + \dots + \binom{k}{k-1} x^1 y^k + \binom{k}{k} x^0 y^{k+1} \\ &= x^{k+1} y^0 + \binom{k+1}{1} x^k y^1 + \binom{k+1}{2} x^{k-1} y^2 + \dots + \binom{k+1}{k} x^1 y^k + x^0 y^{k+1} \\ \end{aligned}$$

Induction proof of Binomial Theorem concluded. We showed the induction step

$$(x+y)^{k+1} = \sum_{i=0}^{k+1} {\binom{k+1}{i}} x^{k+1-i} y^i.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Hence the Binomial Theorem is proved for all $n \in \mathbb{N}$.

Theorem (Bernoulli's inequality)

For all $n \in \mathbb{N}$ and for all $x \in \mathcal{R}$ with x > -1,

$$(1+x)^n \ge 1 + nx.$$

Proof (by induction on *n*)

▶ Basis step, n = 1: $(1 + x)^1 \ge 1 + 1x$ holds

- Induction assumption for fixed k: $(1 + x)^k \ge 1 + kx$
- ► Induction step: Show (1 + x)^{k+1} ≥ 1 + (k + 1)x. Since 1 + x > 0, multiplying the induction assumption by 1 + x yields

$$(1+x)^{k+1} \ge (1+kx)(1+x)$$

= 1 + kx + x + kx²
= 1 + (k + 1)x + kx²
\ge 0

Thus $(1+x)^{k+1} \ge 1 + (k+1)x$.