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Theorem (Schröder-Bernstein)

Let f : A→ B and g : B → A be injective. Then there exists a
bijection h : A→ B.

Proof
The gray area on the left is G :=

⋃
k∈N0

(g ◦ f )k (A− g(B))

= (A− g(B)) ∪ (g ◦ f ) (A− g(B)) ∪ (g ◦ f )2 (A− g(B)) ∪ . . .
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Figure 14.6 suggests our desired bijection h : A → B. The injection f
sends the gray areas on the left bijectively to the gray areas on the right.
The injection g−1 : g(B)→ B sends the white areas on the left bijectively to
the white areas on the right. We can thus define h : A → B so that h(x)= f (x)
if x is a gray point, and h(x)= g−1(x) if x is a white point.
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Figure 14.6. The bijection h : A → B

This informal argument suggests that given injections f : A → B and
g : B → A, there is a bijection h : A → B. But it is not a proof. We now present
this as a theorem and tighten up our reasoning in a careful proof, with the
above diagrams and ideas as a guide.

Theorem 14.10 (The Cantor-Bernstein-Schröder Theorem)
If |A|≤ |B| and |B|≤ |A|, then |A| = |B|. In other words, if there are injections
f : A → B and g : B → A, then there is a bijection h : A → B.

Proof. (Direct) Suppose there are injections f : A → B and g : B → A. Then,
in particular, g : B → g(B) is a bijection from B onto the range of g, so it
has an inverse g−1 : g(B) → B. (Note that g : B → A itself has no inverse
g−1 : A → B unless g is surjective.) Consider the subset

G =
∞�

k=0
(g ◦ f )k�

A− g(B)
�⊆ A.
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Claim:

h : A→ B, x 7→

{
f (x) if x ∈ G ,

g−1(x) if x ∈W ,
is bijective.



G :=
⋃

k∈N0
(g ◦ f )k (A− g(B))

W := A− G
h : A→ B, x 7→

{
f (x) if x ∈ G ,

g−1(x) if x ∈W .

For injectivity, let x , y ∈ A such that h(x) = h(y).

I Case x , y ∈ G : Then f (x) = f (y) implies x = y since f is
injective.

I Case x , y ∈W : Then g−1(x) = g−1(y) implies x = y by
applying g on both sides.

I Case x ∈ G , y ∈W : Then f (x) = g−1(y) implies
y = (g ◦ f )(x) ∈ (g ◦ f )(G ) ⊆ G by the definition of G .
Contradiction.

Hence h is injective.



G :=
⋃

k∈N0
(g ◦ f )k (A− g(B))

W := A− G
h : A→ B, x 7→

{
f (x) if x ∈ G ,

g−1(x) if x ∈W .

For surjectivity, let y ∈ B and find x ∈ A such that h(x) = y .

I Case g(y) ∈W : Then h(g(y)︸︷︷︸
=:x

) = g−1(g(y)) = y .

I Case g(y) ∈ G : From the definition of G , we have k ∈ N0

and z ∈ A− g(B) such that

g(y) = (g ◦ f )k(z).

I k > 0 because else g(y) = z ∈ A− g(B) is a contradiction.
I Then y = f ◦ (g ◦ f )k−1(z)︸ ︷︷ ︸

=:x∈G

since g is injective.

I Hence h(x) = f (x) = y .

Thus h is surjective.

We constructed a bijection A→ B by patching together injections
A→ B and B → A.



|P(N)| = |R|

Theorem
|P(N)| = |R|

Proof.
By a previous Thm and Schröder-Bernstein it suffices to construct
injections between P(N) and [0, 1):

I Define g : P(N)→ [0, 1) as

g(A) := 0.x1x2x3 . . . in decimal where xi :=

{
1 if i ∈ A,

0 else.

E.g. g({1, 3}) = 0.101
g({2n : n ∈ N}) = 0.010101 . . . (periodic)



I For f : [0, 1)→ P(N) consider x = 0.x1x2x3 . . . in binary (i.e.
xi ∈ {0, 1}) and define

f (x) := {i ∈ N : xi = 1}.

E.g. f (0.101) = {1, 3}
f (0.010101 . . . ) = {2n : n ∈ N}

f is injective but not surjective since e.g. N 6∈ f ([0, 1)). Note
0.111 · · · = 1 in binary.



|A| < |P(A)|
Theorem
|A| < |P(A)| for any set A.

Already known for finite A since then |P(A)| = 2|A|.

Proof.

I |A| ≤ |P(A)| since g : A→ P(A), x 7→ {x}, is injective.

I To get |A| < |P(A)|, show that no f : A→ P(A) is surjective
(cf. Cantor’s diagonal argument).

I Let f : A→ P(A) arbitrary and

B := {x ∈ A : x 6∈ f (x)}.
I Claim: f (a) 6= B for all a ∈ A.

I Case a 6∈ f (a): Then a ∈ B by definition. Hence f (a) 6= B
because else a 6∈ B and a ∈ B (contradiction).

I Case a ∈ f (a): Then a 6∈ B. Hence f (a) 6= B.

I Hence f is not surjective. There is no bijection A→ P(A).



Bigger and bigger

By the previous Theorem, we have a chain of strictly increasing
infinite cardinalities,

|N| < |P(N)|︸ ︷︷ ︸
=|R|

< |P(P(N))| < |P(P(P(N)))| < . . .

I ℵ0 (aleph nought) is the cardinality of the least infinite set N.

I The cardinality of |R| is often called c (for continuum).



The Continuum Hypothesis

Recall |N| < |R|

Continuum Hypothesis (CH)

There is no set whose cardinality is strictly between |N| and |R|.

I CH was proposed by Cantor 1878.

I As it turned out, CH can neither be proved nor disproved
within Zermelo-Fraenkel Set Theory (ZF).

I CH is independent from ZF; true or false depending on what
additional axioms you accept to build your sets (Gödel 1940,
Cohen 1963).


