Cardinality of sets, 4

Peter Mayr

CU, Discrete Math, April 22, 2020

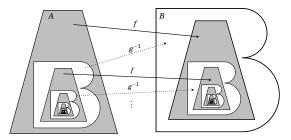
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Theorem (Schröder-Bernstein)

Let $f: A \to B$ and $g: B \to A$ be injective. Then there exists a bijection $h: A \to B$.

Proof

The gray area on the left is $G := \bigcup_{k \in \mathbb{N}_0} (g \circ f)^k (A - g(B))$ = $(A - g(B)) \cup (g \circ f) (A - g(B)) \cup (g \circ f)^2 (A - g(B)) \cup \dots$



Claim: $h: A \to B, x \mapsto \begin{cases} f(x) & \text{if } x \in G, \\ g^{-1}(x) & \text{if } x \in W, \end{cases}$ is bijective. $\begin{array}{ll} G:=\bigcup_{k\in\mathbb{N}_0}(g\circ f)^k\,(A-g(B))\\ W:=A-G \end{array} \qquad h\colon A\to B,\; x\mapsto \begin{cases} f(x) & \text{if } x\in G,\\ g^{-1}(x) & \text{if } x\in W. \end{cases}$

For injectivity, let $x, y \in A$ such that h(x) = h(y).

- Case x, y ∈ G: Then f(x) = f(y) implies x = y since f is injective.
- Case x, y ∈ W: Then g⁻¹(x) = g⁻¹(y) implies x = y by applying g on both sides.
- Case x ∈ G, y ∈ W: Then f(x) = g⁻¹(y) implies y = (g ∘ f)(x) ∈ (g ∘ f)(G) ⊆ G by the definition of G. Contradiction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Hence h is injective.

 $\begin{array}{ll} G:=\bigcup_{k\in\mathbb{N}_0}(g\circ f)^k\,(A-g(B))\\ W:=A-G \end{array} \qquad h\colon A\to B,\ x\mapsto \begin{cases} f(x) & \text{if } x\in G,\\ g^{-1}(x) & \text{if } x\in W. \end{cases}$

For surjectivity, let $y \in B$ and find $x \in A$ such that h(x) = y.

• Case
$$g(y) \in W$$
: Then $h(\underbrace{g(y)}_{=:x}) = g^{-1}(g(y)) = y$.

Case g(y) ∈ G: From the definition of G, we have k ∈ N₀ and z ∈ A − g(B) such that

$$g(y) = (g \circ f)^k(z).$$

k > 0 because else g(y) = z ∈ A - g(B) is a contradiction.
 Then y = f ∘ (g ∘ f)^{k-1}(z) since g is injective.
 Hence h(x) = f(x) = y.

Thus h is surjective.

We constructed a bijection $A \rightarrow B$ by patching together injections $A \rightarrow B$ and $B \rightarrow A$.

$|P(\mathbb{N})| = |\mathbb{R}|$

Theorem $|P(\mathbb{N})| = |\mathbb{R}|$

Proof.

By a previous Thm and Schröder-Bernstein it suffices to construct injections between $P(\mathbb{N})$ and [0, 1):

▶ Define g: P(N) → [0, 1) as
$$g(A) := 0.x_1x_2x_3... \text{ in decimal where } x_i := \begin{cases} 1 & \text{if } i \in A, \\ 0 & \text{else.} \end{cases}$$
E.g. g({1,3}) = 0.101
$$g(\{2n : n \in \mathbb{N}\}) = 0.010101... \text{ (periodic)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For $f: [0,1) \to P(\mathbb{N})$ consider $x = 0.x_1x_2x_3...$ in binary (i.e. $x_i \in \{0,1\}$) and define

$$f(x) := \{i \in \mathbb{N} : x_i = 1\}.$$

E.g.
$$f(0.101) = \{1, 3\}$$

 $f(0.010101...) = \{2n : n \in \mathbb{N}\}$

f is injective but not surjective since e.g. $\mathbb{N} \notin f([0,1))$. Note $0.111 \cdots = 1$ in binary.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

|A| < |P(A)|

Theorem |A| < |P(A)| for any set A. Already known for finite A since then $|P(A)| = 2^{|A|}$. Proof.

- ▶ $|A| \le |P(A)|$ since $g: A \to P(A)$, $x \mapsto \{x\}$, is injective.
- To get |A| < |P(A)|, show that no f: A → P(A) is surjective (cf. Cantor's diagonal argument).</p>

• Let
$$f: A \rightarrow P(A)$$
 arbitrary and

$$B:=\{x\in A : x\not\in f(x)\}.$$

• Claim: $f(a) \neq B$ for all $a \in A$.

- Case a ∉ f(a): Then a ∈ B by definition. Hence f(a) ≠ B because else a ∉ B and a ∈ B (contradiction).
- Case $a \in f(a)$: Then $a \notin B$. Hence $f(a) \neq B$.

• Hence f is not surjective. There is no bijection $A \rightarrow P(A)$.

By the previous Theorem, we have a chain of strictly increasing infinite cardinalities,

$$|\mathbb{N}| < \underbrace{|P(\mathbb{N})|}_{=|\mathbb{R}|} < |P(P(\mathbb{N}))| < |P(P(P(\mathbb{N})))| < \dots$$

▶ \aleph_0 (aleph nought) is the cardinality of the least infinite set \mathbb{N} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• The cardinality of $|\mathbb{R}|$ is often called *c* (for continuum).

The Continuum Hypothesis

Recall $|\mathbb{N}| < |\mathbb{R}|$

Continuum Hypothesis (CH)

There is no set whose cardinality is strictly between $|\mathbb{N}|$ and $|\mathbb{R}|$.

- CH was proposed by Cantor 1878.
- As it turned out, CH can neither be proved nor disproved within Zermelo-Fraenkel Set Theory (ZF).
- CH is independent from ZF; true or false depending on what additional axioms you accept to build your sets (Gödel 1940, Cohen 1963).