Cardinality of sets 2

Peter Mayr

CU, Discrete Math, April 17, 2020

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Recall

Definition

Sets A and B have the same **cardinality**, written |A| = |B|, if there exists a bijection $f : A \rightarrow B$.

Definition

A set A is **finite** if there exists $n \in \mathbb{N}_0$ such that $|A| = |\{1, \dots, n\}|$; otherwise A is **infinite**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

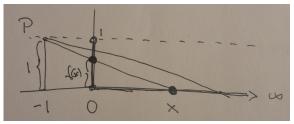
 ${\mathbb R}$ is as big as the open interval (0,1)

Theorem

 $|\mathbb{R}| = |(0,1)|$

Proof.

f: ℝ⁺ → (0, 1), x ↦ x/(x+1), is bijective.
This projects a point x on the positive x-axis to a point f(x) between 0 and 1 on the y-axis:



- $g: \mathbb{R} \to \mathbb{R}^+, x \mapsto e^x$, is bijective.
- $f \circ g \colon \mathbb{R} \to (0,1)$ is bijective.

Theorem |[0,1]| = |(0,1)|Proof. HW

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

There are more reals than integers

```
Theorem (Cantor 1891) |\mathbb{N}| \neq |\mathbb{R}|
```

Proof (Cantor's diagonal argument).

Show that no function $f : \mathbb{N} \to \mathbb{R}$ can be surjective. Consider

 $\begin{array}{c|c} n & f(n) \\\hline 1 & *.a_1a_2a_3\dots \\2 & *.b_1b_2b_3\dots \\3 & *.c_1c_2c_3\dots \\\vdots \\ \end{array}$ Let $z \in \mathbb{R}$ such that the *n*-th decimal place of *z* is distinct from the *n*-the decimal place of f(n) for all $n \in \mathbb{N}$:

$$z = 0.z_1z_2z_2...$$
 with $z_1 \neq a_1, z_2 \neq b_2, z_3 \neq b_3,...$

Then $z \neq f(n)$ for all $n \in \mathbb{N}$. Hence f is not surjective.

There are different sizes of infinite sets!

Definition

A set A is **countably infinite** if $|A| = |\mathbb{N}|$. The cardinality of \mathbb{N} is $\aleph_0 := |\mathbb{N}|$ ('aleph zero', from Hebrew alphabet). A is **uncountable** if A is infinite and $|A| \neq |\mathbb{N}|$.

Note

Every infinite set A has a countably infinite subset,

 \aleph_0 is the smallest size an infinite set can have (the first infinite cardinal).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$$\label{eq:standard} \begin{split} & \mathsf{Example} \\ & \mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}, \mathbb{Q}. \hdots \text{ are countably infinite.} \\ & \mathbb{R}, [0,1], \mathbb{C}, P(\mathbb{N}). \hdots \text{ are uncountable.} \end{split}$$

Why countable?

Note

A is countably infinite iff its elements can be enumerated as a_1, a_2, a_3, \ldots Such an enumeration is just a bijection $\mathbb{N} \to A$, $1 \mapsto a_1$ $2 \mapsto a_2$:

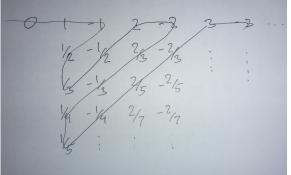
Example

- 1. The set of prime numbers p_1, p_2, \ldots can be enumerated, hence is countably infinite.
- 2. The elements of \mathbb{R} cannot be enumerated one after the other by Cantor's diagonal argument.

${\mathbb Q}$ is countable

 $\begin{array}{l} \text{Theorem} \\ |\mathbb{Q}| = \aleph_0 \end{array}$

Proof. Enumerate Q



Similarly $\mathbb{N}\times\mathbb{N},\mathbb{Z}^3,\ldots\,$ can be enumerated.

<ロト <回ト < 回ト < 回ト

æ