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One important equivalence relation is ≡n on Z for n ∈ N, n > 1.

Example

The equivalence classes of ≡3 are

[0] = {. . . ,−3, 0, 3, . . . } = { 3z : z ∈ Z}
[1] = {. . . ,−2, 1, 4, . . . } = {1 + 3z : z ∈ Z}
[2] = {. . . ,−1, 2, 5, . . . } = {2 + 3z : z ∈ Z}

Note [0] = [3], etc.

Definition
For n ∈ N, n > 1, the class of a ∈ Z modulo n is

[a]n = {a + zn : z ∈ Z}.

The set of classes

Zn := {[0], [1], [2], . . . , [n − 1]}

is called the integers modulo n.



Computing in Zn

Define +,−, · on Zn by

[a] + [b] := [a + b]
−[a] := [−a]

[a] · [b] := [a · b]

Note
These operations are defined via representatives (elements) of
classes. But each class has different elements to choose from to do
the computation, e.g., in Z3:

[5] = [2], [11] = [2] so [5] · [11]︸ ︷︷ ︸
=[55]

= [2] · [2]︸ ︷︷ ︸
[4]

Are the results the same? Yes, [55] = [1] = [4].



Is the result independent of the choice of representatives?

Let a, b, c , d ∈ Z such that

[a]n = [c]n, [b]n = [d ]n

We want to show that [a + b]n = [c + d ]n.

Proof.
By assumption a ≡n c , b ≡n d . By a previous Lemma

a + b ≡n c + d
ab ≡n cd

Thus [a + b]n = [c + d ]n, [ab]n = [cd ]n.

We say the operations +, · on Zn are well-defined (independent of
the choice of representatives for each class).



Theorem
+,−, · on Zn for n > 1 satisfy the same laws as +,−, · on Z:
associativity, commutativity, distributivity, etc.

Proof idea.
This follows since the operations on Zn are defined in terms of
those on Z.
E.g. to show that + on Zn is commutative, consider

[a] + [b] = [a + b] = [b + a] = [b] + [a]

Sometimes one can even divide in Zn. See HW.



Operation tables on Z4

To ease notation we drop the brackets [.] for classes and write 0 for
[0].
+, · on Z4 = {0, 1, 2, 3} are represented in the following tables.

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1


