Integers modulo n

Peter Mayr

CU, Discrete Math, April 6, 2020

One important equivalence relation is \equiv_{n} on \mathbb{Z} for $n \in \mathbb{N}, n>1$.

Example

The equivalence classes of \equiv_{3} are

$$
\begin{aligned}
& {[0]=\{\ldots,-3,0,3, \ldots\}=\left\{\begin{aligned}
3 z & : \\
{[1] } & z \in \mathbb{Z}\} \\
{[2]=\{\ldots,-2,1,4, \ldots\}=\{1+3 z:} & z \in \mathbb{Z}\}
\end{aligned}\right.} \\
& {[\ldots,-1,2,5, \ldots\}=\{2+3 z:} \\
& {[2 \in \mathbb{Z}\}}
\end{aligned}
$$

Note [0] $=[3]$, etc.
Definition
For $n \in \mathbb{N}, n>1$, the class of $a \in \mathbb{Z}$ modulo n is

$$
[a]_{n}=\{a+z n: z \in \mathbb{Z}\}
$$

The set of classes

$$
\mathbb{Z}_{n}:=\{[0],[1],[2], \ldots,[n-1]\}
$$

is called the integers modulo n.

Computing in \mathbb{Z}_{n}

Define,+- , on \mathbb{Z}_{n} by

$$
\begin{aligned}
{[a]+[b] } & :=[a+b] \\
-[a] & :=[-a] \\
{[a] \cdot[b] } & :=[a \cdot b]
\end{aligned}
$$

Note

These operations are defined via representatives (elements) of classes. But each class has different elements to choose from to do the computation, e.g., in \mathbb{Z}_{3} :

$$
[5]=[2],[11]=[2] \quad \text { so } \quad \underbrace{[5] \cdot[11]}_{=[55]}=\underbrace{[2] \cdot[2]}_{[4]}
$$

Are the results the same? Yes, [55] $=[1]=[4]$.

Is the result independent of the choice of representatives?

Let $a, b, c, d \in \mathbb{Z}$ such that

$$
[a]_{n}=[c]_{n}, \quad[b]_{n}=[d]_{n}
$$

We want to show that $[a+b]_{n}=[c+d]_{n}$.
Proof.
By assumption $a \equiv_{n} c, b \equiv_{n} d$. By a previous Lemma

$$
\begin{gathered}
a+b \\
\equiv_{n} c+d \\
a b \equiv_{n} c d
\end{gathered}
$$

Thus $[a+b]_{n}=[c+d]_{n},[a b]_{n}=[c d]_{n}$.
We say the operations + , on \mathbb{Z}_{n} are well-defined (independent of the choice of representatives for each class).

Theorem
,,$+- \cdot$ on \mathbb{Z}_{n} for $n>1$ satisfy the same laws as,,$+- \cdot$ on \mathbb{Z} : associativity, commutativity, distributivity, etc.

Proof idea.
This follows since the operations on \mathbb{Z}_{n} are defined in terms of those on \mathbb{Z}.
E.g. to show that + on \mathbb{Z}_{n} is commutative, consider

$$
[a]+[b]=[a+b]=[b+a]=[b]+[a]
$$

Sometimes one can even divide in \mathbb{Z}_{n}. See HW.

Operation tables on \mathbb{Z}_{4}

To ease notation we drop the brackets [.] for classes and write 0 for [0]. ,$+ \cdot$ on $\mathbb{Z}_{4}=\{0,1,2,3\}$ are represented in the following tables.

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

\cdot	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

