Review 3: Integers modulo n

Peter Mayr

CU, Discrete Math, December 7, 2020

Question
Which elements are invertible in \mathbb{Z} ?
[Which elements can you divide by?]
$1,-1$

Question
Which elements are invertible in \mathbb{Z}_{n} ?
Goal: Solve equations like $[a]_{n} \cdot x=[c]_{n}$.

Recall

Let $n \in \mathbb{N}, n>1$, and $a, b \in \mathbb{Z}$.

Definition

$a \equiv b \bmod n($ read: a is congruent to b modulo $n)$ if $n \mid a-b$. Alternative notation: $a \equiv_{n} b$.

1. \equiv_{n} is an equivalence relation on \mathbb{Z}.
2. The class of $a \bmod n$ is $[a]_{n}=a+n \mathbb{Z}$.
3. $\mathbb{Z}_{n}:=\left\{[0]_{n},[1]_{n}, \ldots,[n-1]_{n}\right\}$ are the integers modulo n.
4. $[a]+[b]:=[a+b],-[a]:=[-a]$, and $[a] \cdot[b]:=[a \cdot b]$ are well-defined on \mathbb{Z}_{n} and satisfy the same laws as,,$+- \cdot$ on \mathbb{Z}.
5. $[1]_{n}$ is the multiplicative identity in \mathbb{Z}_{n}.
6. $[a]_{n}$ has a multiplicative inverse $[b]_{n}$ in \mathbb{Z}_{n} if $[a]_{n} \cdot[b]_{n}=1$. Then $[a]_{n}$ is invertible.
If $[a]_{n}$ has inverse $[b]_{n}$, we can solve $[a]_{n} \cdot x=[c]_{n}$ as $x=[b]_{n} \cdot[c]_{n}$.

Operation tables on \mathbb{Z}_{4}

To ease notation we drop the brackets [.] for classes and write 0 for [0].

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

\cdot	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Invertible elements in $\mathbb{Z}_{4}: 1,3$
[$3 \cdot 3=1$, hence 3 is its own inverse.]

When is $[a]_{n}$ in \mathbb{Z}_{n} invertible?

Theorem
Let $n \in \mathbb{N}, n>1$, and $a \in \mathbb{Z}$. Then $[a]_{n}$ is invertible in \mathbb{Z}_{n} iff $\operatorname{gcd}(a, n)=1$.

Proof.
$[a]_{n}$ is invertible iff $\exists x \in \mathbb{Z}: a x \equiv 1 \bmod n$ iff $\exists x, y \in \mathbb{Z}: a x+n y=1$
(by definition)
iff $\operatorname{gcd}(a, n)=1 . \quad$ (by a previous Thm)
Corollary
Let p be a prime. Then every element in $\mathbb{Z}_{p} \backslash\left\{[0]_{p}\right\}$ is invertible.

Do you want to know more?

- For applications of \mathbb{Z}_{n} in cryptography and more see Math 3110 - Intro to the Theory of Numbers
- For a general study of algebraic structures like \mathbb{Z}_{n}, polynomials, permutations,...

Math 3140 - Abstract Algebra 1

