Review 3: Integers modulo *n*

Peter Mayr

CU, Discrete Math, December 7, 2020

Question

Which elements are invertible in \mathbb{Z} ? [Which elements can you divide by?]

1, -1

Question

Which elements are invertible in \mathbb{Z}_n ?

Goal: Solve equations like $[a]_n \cdot x = [c]_n$.

Recall

Let $n \in \mathbb{N}$, n > 1, and $a, b \in \mathbb{Z}$.

Definition

 $a \equiv b \mod n$ (read: a is **congruent** to b **modulo** n) if n|a-b. Alternative notation: $a \equiv_n b$.

- 1. \equiv_n is an equivalence relation on \mathbb{Z} .
- 2. The **class** of a mod n is $[a]_n = a + n\mathbb{Z}$.
- 3. $\mathbb{Z}_n := \{[0]_n, [1]_n, \dots, [n-1]_n\}$ are the **integers modulo** n.
- 4. [a] + [b] := [a + b], -[a] := [-a], and $[a] \cdot [b] := [a \cdot b]$ are well-defined on \mathbb{Z}_n and satisfy the same laws as $+, -, \cdot$ on \mathbb{Z} .
- 5. $[1]_n$ is the **multiplicative identity** in \mathbb{Z}_n .
- 6. $[a]_n$ has a multiplicative inverse $[b]_n$ in \mathbb{Z}_n if $[a]_n \cdot [b]_n = 1$. Then $[a]_n$ is invertible.

If $[a]_n$ has inverse $[b]_n$, we can solve $[a]_n \cdot x = [c]_n$ as $x = [b]_n \cdot [c]_n$.

Operation tables on \mathbb{Z}_4

To ease notation we drop the brackets [.] for classes and write 0 for [0].

+	0	1	2	3	
0	0	1	2	3	
1 2 3	1	2	3	0	
2	2	3	0	1	
3	3	0	2 3 0 1	2	

Invertible elements in \mathbb{Z}_4 : 1, 3 $[3 \cdot 3 = 1$, hence 3 is its own inverse.]

When is $[a]_n$ in \mathbb{Z}_n invertible?

Theorem

Let $n \in \mathbb{N}$, n > 1, and $a \in \mathbb{Z}$. Then $[a]_n$ is invertible in \mathbb{Z}_n iff gcd(a, n) = 1.

Proof.

[a]_n is invertible iff
$$\exists x \in \mathbb{Z} \colon ax \equiv 1 \mod n$$
 (by definition) iff $\exists x, y \in \mathbb{Z} \colon ax + ny = 1$ (by def of \equiv_n) iff $\gcd(a, n) = 1$. (by a previous Thm)

Corollary

Let p be a prime. Then every element in $\mathbb{Z}_p \setminus \{[0]_p\}$ is invertible.

Do you want to know more?

- For applications of \mathbb{Z}_n in cryptography and more see Math 3110 Intro to the Theory of Numbers
- For a general study of algebraic structures like \mathbb{Z}_n , polynomials, permutations,...

Math 3140 - Abstract Algebra 1