SETS VS. LOGIC

PETER MAYR (MATH 2001, CU BOULDER)

For all sets A, B, C in the universe U :

$$
\begin{aligned}
& A \cap B \\
& A \cup B \\
& \bar{A} \\
& A \subseteq B \\
& A \cap(B \cap C)=(A \cap B) \cap C \\
& A \cup(B \cup C)=(A \cup B) \cup C \\
& A \cap B=B \cap A \\
& A \cup B=B \cup A \\
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
& \overline{\bar{A}}=A \\
& A \cap \bar{A}=\emptyset \\
& A \cup \bar{A}=U \\
& \overline{A \cap B}=\bar{A} \cup \bar{B} \\
& \overline{A \cup B}=\bar{A} \cap \bar{B} \\
& A \subseteq B \text { iff } \bar{B} \subseteq \bar{A} \\
& \hline \text { Date: February } 14,2018 .
\end{aligned}
$$

For all statements P, Q, R :

$$
\begin{array}{r}
P \wedge Q \\
P \vee Q \\
\sim P \\
P \Rightarrow Q
\end{array}
$$

associative laws
commutative laws
distributive laws
de Morgan's laws
contrapositive law

$$
P \wedge(Q \wedge R)=(P \wedge Q) \wedge R
$$

$$
P \vee(Q \vee R)=(P \vee Q) \vee R
$$

$$
P \wedge Q=Q \wedge P
$$

$$
P \vee Q=Q \vee P
$$

$$
P \wedge(Q \vee R)=(P \wedge Q) \vee(P \wedge R)
$$

$$
P \vee(Q \wedge R)=(P \vee Q) \wedge(P \vee R)
$$

$$
\sim(\sim P)=P
$$

$$
P \wedge \sim P=F
$$

$$
P \vee \sim P=T
$$

$$
\begin{aligned}
& \sim(P \wedge Q)=\sim P \vee \sim Q \\
& \sim(P \vee Q)=\sim P \wedge \sim Q
\end{aligned}
$$

$$
P \Rightarrow Q=\sim Q \Rightarrow \sim P
$$

