HOW TO SHOW TWO SETS S AND T ARE EQUAL

PETER MAYR (MATH 2001, CU BOULDER)

Show that $S \subseteq T$ by taking an arbitrary element $x \in S$ and argue that $x \in T$ also. Then show the converse that $T \subseteq S$ by taking an arbitrary element $x \in T$ and argue that $x \in S$ also. Since now $S \subseteq T$ and $T \subseteq S$, you actually know $S = T$.

Example 1. Show that for all sets A, B, C the distributive law
\[(A \cup B) \cap C = (A \cap C) \cup (B \cap C)\]
holds.

Proof. We have two inclusions to show:

1. Show $(A \cup B) \cap C \subseteq (A \cap C) \cup (B \cap C)$:
 Let $x \in (A \cup B) \cap C$. Then $x \in A \cup B$ and $x \in C$ by the definition of \cap. Since $x \in A \cup B$, we have $x \in A$ or $x \in B$ by the definition of \cup. We consider these 2 cases separately:
 - Case $x \in A$: Then $x \in A$ and $x \in C$ yields $x \in A \cap C$.
 - Case $x \in B$: Then $x \in B$ and $x \in C$ yields $x \in B \cap C$.
 In either case $x \in (A \cap C) \cup (B \cap C)$.
 Hence for any element $x \in (A \cup B) \cap C$ we also have $x \in (A \cap C) \cup (B \cap C)$. This proves
 \[(A \cup B) \cap C \subseteq (A \cap C) \cup (B \cap C)\].

2. Next show the converse $(A \cap C) \cup (B \cap C) \subseteq (A \cup B) \cap C$:
 Let $x \in (A \cap C) \cup (B \cap C)$. Then $x \in (A \cap C)$ or $x \in (B \cap C)$.

 \[\square\]

Date: February 5, 2018.