Relations 1

Peter Mayr

CU, Discrete Math, November 9, 2020

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Life (Math) is full of statements how 2 things relate to each other

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example x = 3 $-2 \le 5$ $3 \mid 12$ $1 \in \mathbb{N}$ $x \mapsto x^2$ $5 \equiv 1 \pmod{2}$

Example

Relation *R* between animals {ant, bees} and properties {carnivorous, flying, statebuilding}:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example

Relation *R* between animals {ant, bees} and properties {carnivorous, flying, statebuilding}:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example

Relation *R* between animals {ant, bees} and properties {carnivorous, flying, statebuilding}:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

	c arnivorous	f lying	s tatebuilding
ants	х		х
bees		х	х

Example

Relation *R* between animals {ant, bees} and properties {carnivorous, flying, statebuilding}:

	c arnivorous	f lying	s tatebuilding
ants	х		х
bees		х	х

R is represented by those pairs that go together:

$$R = \{(a, c), (a, s), (b, f), (b, s)\} \subseteq \{a, b\} \times \{c, f, s\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let A, B be sets. A relation R from A to B is a subset of $A \times B$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Let A, B be sets. A relation R from A to B is a subset of $A \times B$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Let A, B be sets. A **relation** R from A to B is a subset of $A \times B$. For $(a, b) \in R$, we say a and b are R-related and also write aRb. If A = B, then R is a relation on A.

Example

Let A, B be sets. A **relation** R from A to B is a subset of $A \times B$. For $(a, b) \in R$, we say a and b are R-related and also write aRb. If A = B, then R is a relation on A.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

1. $R := \{(0,0), (0,1), (1,1)\}$ is a relation on $A = \{0,1\}$. Here 0R0, 0R1, 1R1.

Let A, B be sets. A **relation** R from A to B is a subset of $A \times B$. For $(a, b) \in R$, we say a and b are R-related and also write aRb. If A = B, then R is a relation on A.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

1. $R := \{(0,0), (0,1), (1,1)\}$ is a relation on $A = \{0,1\}$. Here 0R0, 0R1, 1R1.

Let A, B be sets. A **relation** R from A to B is a subset of $A \times B$. For $(a, b) \in R$, we say a and b are R-related and also write aRb. If A = B, then R is a relation on A.

Example

1. $R := \{(0,0), (0,1), (1,1)\}$ is a relation on $A = \{0,1\}$. Here 0R0, 0R1, 1R1.

This relation is also known as \leq on $\{0,1\}$, in short $R = \leq$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Let A, B be sets. A **relation** R from A to B is a subset of $A \times B$. For $(a, b) \in R$, we say a and b are R-related and also write aRb. If A = B, then R is a relation on A.

Example

1. $R := \{(0,0), (0,1), (1,1)\}$ is a relation on $A = \{0,1\}$. Here 0R0, 0R1, 1R1. This relation is also known as \leq on $\{0,1\}$, in short $R = \leq$. 2. $S := \{(x, y) \in \mathbb{Z} \times \{0, 1\}, \dots, y \text{ mod } 2 = y\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

2. $S := \{(x, y) \in \mathbb{Z} \times \{0, 1\} : x \mod 2 = y\}$ relation from \mathbb{Z} to $\{0, 1\}$ e.g. 4S0, 3S1 but 0 \$\$1

Let A, B be sets. A **relation** R from A to B is a subset of $A \times B$. For $(a, b) \in R$, we say a and b are R-related and also write aRb. If A = B, then R is a relation on A.

Example

1. $R := \{(0,0), (0,1), (1,1)\}$ is a relation on $A = \{0,1\}$. Here 0R0, 0R1, 1R1.

This relation is also known as \leq on $\{0,1\}$, in short $R = \leq$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

2.
$$S := \{(x, y) \in \mathbb{Z} \times \{0, 1\} : x \mod 2 = y\}$$

relation from \mathbb{Z} to $\{0, 1\}$
e.g. 4S0, 3S1 but 0 \$1

3.
$$T := \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : n | x - y\}$$
 for fixed $n \in \mathbb{N}$
 $T = \equiv_n$, the congruence modulo n
e.g. $0 \equiv_n n \equiv_n 2n \dots$

Definition A relation R from A to B is a **function** if

 $\forall a \in A \exists$ unique $b \in B$: aRb

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition A relation R from A to B is a **function** if

 $\forall a \in A \exists$ unique $b \in B$: aRb

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition A relation R from A to B is a **function** if

 $\forall a \in A \exists$ unique $b \in B$: aRb

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Then we usually write R(a) = b.

Definition A relation R from A to B is a **function** if

 $\forall a \in A \exists$ unique $b \in B$: aRb

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Then we usually write R(a) = b.

Example $f = \{(x, x^2) : x \in \mathbb{R}\}$

Definition A relation R from A to B is a **function** if

 $\forall a \in A \exists$ unique $b \in B$: aRb

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Then we usually write R(a) = b.

Example $f = \{(x, x^2) : x \in \mathbb{R}\}$

Definition A relation R from A to B is a **function** if

 $\forall a \in A \exists$ unique $b \in B$: aRb

Then we usually write R(a) = b.

Example

 $f=\{(x,x^2)\ :\ x\in \mathbb{R}\}$ is also written as $f\colon \mathbb{R}\to \mathbb{R},\ x\mapsto x^2$ or $f(x)=x^2$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Definition A relation R from A to B is a **function** if

 $\forall a \in A \exists$ unique $b \in B$: aRb

Then we usually write R(a) = b.

Example

 $f=\{(x,x^2)\ :\ x\in \mathbb{R}\}$ is also written as $f\colon \mathbb{R}\to \mathbb{R},\ x\mapsto x^2$ or $f(x)=x^2$

More about functions later.

Definition Let R be a relation on A. Then

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition Let R be a relation on A. Then

1. *R* is **reflexive** if $\forall x \in A : xRx$

(every element is related to itself)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition Let R be a relation on A. Then 1. R is reflexive if $\forall x \in A : xRx$ (every element is related to itself) 2. R is symmetric if $\forall x, y \in A : xRy \Rightarrow yRx$ (if x is related to y, then also y is related to x)

Definition

Let R be a relation on A. Then

1. *R* is **reflexive** if $\forall x \in A$: *xRx*

(every element is related to itself)

- 2. *R* is **symmetric** if $\forall x, y \in A : xRy \Rightarrow yRx$ (if *x* is related to *y*, then also *y* is related to *x*)
- 3. *R* is **antisymmetric** if $\forall x, y \in A$: $(xRy \land yRx) \Rightarrow x = y$ (*x* is related to *y* and conversely only if x = y)

Definition

Let R be a relation on A. Then

1. *R* is **reflexive** if $\forall x \in A$: *xRx*

(every element is related to itself)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- 2. *R* is **symmetric** if $\forall x, y \in A : xRy \Rightarrow yRx$ (if *x* is related to *y*, then also *y* is related to *x*)
- 3. *R* is **antisymmetric** if $\forall x, y \in A$: $(xRy \land yRx) \Rightarrow x = y$ (*x* is related to *y* and conversely only if x = y)
- 4. *R* is **transitive** if $\forall x, y, z \in A$: $(xRy \land yRz) \Rightarrow xRz$ (if x is related to y and y is related to z, then also x to z)

Definition

Let R be a relation on A. Then

1. *R* is **reflexive** if $\forall x \in A$: *xRx*

(every element is related to itself)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- 2. *R* is **symmetric** if $\forall x, y \in A : xRy \Rightarrow yRx$ (if *x* is related to *y*, then also *y* is related to *x*)
- 3. *R* is **antisymmetric** if $\forall x, y \in A$: $(xRy \land yRx) \Rightarrow x = y$ (*x* is related to *y* and conversely only if x = y)
- 4. *R* is **transitive** if $\forall x, y, z \in A$: $(xRy \land yRz) \Rightarrow xRz$ (if x is related to y and y is related to z, then also x to z)

Definition

Let R be a relation on A. Then

1. *R* is **reflexive** if $\forall x \in A$: *xRx*

(every element is related to itself)

- 2. *R* is **symmetric** if $\forall x, y \in A : xRy \Rightarrow yRx$ (if *x* is related to *y*, then also *y* is related to *x*)
- 3. *R* is **antisymmetric** if $\forall x, y \in A$: $(xRy \land yRx) \Rightarrow x = y$ (*x* is related to *y* and conversely only if x = y)
- 4. *R* is **transitive** if $\forall x, y, z \in A$: $(xRy \land yRz) \Rightarrow xRz$ (if x is related to y and y is related to z, then also x to z)

Beware: antisymmetric is not the same as 'not symmetric'.

 $\begin{array}{l} \mathsf{Example} \\ \leq \mathsf{on} \ \mathbb{Z} \end{array}$

(ロ)、(型)、(E)、(E)、 E) の(()

 $\leq \text{ on } \mathbb{Z}$

reflexive:

How to show a quantified statement, like $\forall x \in \mathbb{Z} : xRx$?

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

 $\leq \text{ on } \mathbb{Z}$

reflexive:

How to show a quantified statement, like $\forall x \in \mathbb{Z} : xRx$?

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

 \leq on $\mathbb Z$

reflexive:

How to show a quantified statement, like $\forall x \in \mathbb{Z} : xRx$? **Proof.** Let $x \in \mathbb{Z}$ (arbitrary). Show xRx.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 \leq on $\mathbb Z$

reflexive:

How to show a quantified statement, like $\forall x \in \mathbb{Z} : xRx$? **Proof.** Let $x \in \mathbb{Z}$ (arbitrary). Show xRx.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let $x \in \mathbb{Z}$. Then $x \leq x$.

 \leq on $\mathbb Z$

reflexive:

How to show a quantified statement, like $\forall x \in \mathbb{Z} : xRx$? **Proof.** Let $x \in \mathbb{Z}$ (arbitrary). Show xRx.

Let $x \in \mathbb{Z}$. Then $x \leq x$.

not symmetric:

How to show a quantified statement, like $\forall x, y \in \mathbb{Z} : xRy \Rightarrow yRx$, is false?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \leq on $\mathbb Z$

reflexive:

How to show a quantified statement, like $\forall x \in \mathbb{Z} : xRx$? **Proof.** Let $x \in \mathbb{Z}$ (arbitrary). Show xRx.

Let $x \in \mathbb{Z}$. Then $x \leq x$.

not symmetric:

How to show a quantified statement, like $\forall x, y \in \mathbb{Z} : xRy \Rightarrow yRx$, is false?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \leq on $\mathbb Z$

reflexive:

How to show a quantified statement, like $\forall x \in \mathbb{Z} : xRx$? **Proof.** Let $x \in \mathbb{Z}$ (arbitrary). Show xRx.

```
Let x \in \mathbb{Z}. Then x \leq x.
```

• not symmetric:

How to show a quantified statement, like $\forall x, y \in \mathbb{Z} : xRy \Rightarrow yRx$, is false?

By counterexample. Give explicit $x, y \in \mathbb{Z}$ such that xRy but not yRx.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

 \leq on $\mathbb Z$

reflexive:

```
How to show a quantified statement, like \forall x \in \mathbb{Z} : xRx?

Proof. Let x \in \mathbb{Z} (arbitrary). Show xRx.
```

```
Let x \in \mathbb{Z}. Then x \leq x.
```

• not symmetric:

How to show a quantified statement, like $\forall x, y \in \mathbb{Z} : xRy \Rightarrow yRx$, is false?

By counterexample. Give explicit $x, y \in \mathbb{Z}$ such that xRy but not yRx.

Example, $0 \leq 1$ but $1 \not\leq 0$

Example, continued \leq on \mathbb{Z} :

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $\leq \text{ on } \mathbb{Z}:$

▶ antisymmetric: Let $x, y \in \mathbb{Z}$. Assume $x \le y$ and $y \le x$. Then x = y.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 \leq on \mathbb{Z} :

▶ antisymmetric: Let $x, y \in \mathbb{Z}$. Assume $x \le y$ and $y \le x$. Then x = y.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

▶ transitive: Let $x, y, z \in \mathbb{Z}$. Assume $x \le y$ and $y \le z$. Then $x \le z$.

 \leq on \mathbb{Z} :

▶ antisymmetric: Let $x, y \in \mathbb{Z}$. Assume $x \le y$ and $y \le x$. Then x = y.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

▶ transitive: Let $x, y, z \in \mathbb{Z}$. Assume $x \le y$ and $y \le z$. Then $x \le z$.

• no function: by example, $0 \le 1$ and $0 \le 2$

 \leq on \mathbb{Z} :

- ▶ antisymmetric: Let $x, y \in \mathbb{Z}$. Assume $x \le y$ and $y \le x$. Then x = y.
- ▶ transitive: Let $x, y, z \in \mathbb{Z}$. Assume $x \le y$ and $y \le z$. Then $x \le z$.

• no function: by example, $0 \le 1$ and $0 \le 2$

Example

= is reflexive, symmetric, antisymmetric, transitive, a function.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

 \equiv_n on $\mathbb Z$ for $n\in\mathbb N, n>1$

- \equiv_n on \mathbb{Z} for $n \in \mathbb{N}, n > 1$
 - ▶ reflexive: Let $x \in \mathbb{Z}$. Then $x \equiv_n x$ since n|x x.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- \equiv_n on \mathbb{Z} for $n \in \mathbb{N}, n > 1$
 - ▶ reflexive: Let $x \in \mathbb{Z}$. Then $x \equiv_n x$ since n|x x.

▶ symmetric: Let $x, y \in \mathbb{Z}$. Assume $x \equiv_n y$. Then n|x - yimplies $n|\underbrace{y - x}_{-(x-y)}$. Hence $y \equiv_n x$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- \equiv_n on \mathbb{Z} for $n \in \mathbb{N}, n > 1$
 - ▶ reflexive: Let $x \in \mathbb{Z}$. Then $x \equiv_n x$ since n|x x.

▶ symmetric: Let $x, y \in \mathbb{Z}$. Assume $x \equiv_n y$. Then n|x - yimplies $n|\underbrace{y - x}_{-(x-y)}$. Hence $y \equiv_n x$.

▶ not antisymmetric: By example, $n \equiv_n 0$ and $0 \equiv_n n$ but $n \neq 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- \equiv_n on \mathbb{Z} for $n \in \mathbb{N}, n > 1$
 - ▶ reflexive: Let $x \in \mathbb{Z}$. Then $x \equiv_n x$ since n|x x.
 - ▶ symmetric: Let $x, y \in \mathbb{Z}$. Assume $x \equiv_n y$. Then n|x y implies $n|\underbrace{y x}_{-(x-y)}$. Hence $y \equiv_n x$.

▶ not antisymmetric: By example, $n \equiv_n 0$ and $0 \equiv_n n$ but $n \neq 0$.

▶ transitive: Let $x, y, z \in \mathbb{Z}$. Assume $x \equiv_n y$ and $y \equiv_n z$. Then n|x - y and n|y - z. So $n|\underbrace{(x - y) + (y - z)}_{x - z}$. Hence $x \equiv_n z$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- \equiv_n on \mathbb{Z} for $n \in \mathbb{N}, n > 1$
 - ▶ reflexive: Let $x \in \mathbb{Z}$. Then $x \equiv_n x$ since n|x x.
 - ▶ symmetric: Let $x, y \in \mathbb{Z}$. Assume $x \equiv_n y$. Then n|x y implies $n|\underbrace{y x}_{-(x-y)}$. Hence $y \equiv_n x$.

▶ not antisymmetric: By example, $n \equiv_n 0$ and $0 \equiv_n n$ but $n \neq 0$.

▶ transitive: Let $x, y, z \in \mathbb{Z}$. Assume $x \equiv_n y$ and $y \equiv_n z$. Then n|x - y and n|y - z. So $n|\underbrace{(x - y) + (y - z)}_{x - z}$. Hence $x \equiv_n z$.

▶ no function: By example, $0 \equiv_n 0$ and $0 \equiv_n n$