Relations 1

Peter Mayr

CU, Discrete Math, November 9, 2020

Life (Math) is full of statements how 2 things relate to each other

$$
\begin{aligned}
& \text { Example } \\
& x=3 \\
& -2 \leq 5 \\
& 3 \mid 12 \\
& 1 \in \mathbb{N} \\
& x \mapsto x^{2} \\
& 5 \equiv 1(\bmod 2)
\end{aligned}
$$

How can relations be represented in general?

Example

Relation R between animals \{ant, bees $\}$ and properties \{carnivorous, flying, statebuilding\}:

How can relations be represented in general?

Example

Relation R between animals \{ant, bees $\}$ and properties \{carnivorous, flying, statebuilding\}:

How can relations be represented in general?

Example

Relation R between animals \{ant, bees $\}$ and properties \{carnivorous, flying, statebuilding\}:

	carnivorous	flying	statebuilding
ants	\times		\times
bees		x	x

How can relations be represented in general?

Example

Relation R between animals \{ant, bees\} and properties \{carnivorous, flying, statebuilding\}:

	carnivorous	flying	statebuilding
ants	\times		\times
bees		x	x

R is represented by those pairs that go together:

$$
R=\{(a, c),(a, s),(b, f),(b, s)\} \subseteq\{a, b\} \times\{c, f, s\}
$$

Definition
Let A, B be sets. A relation R from A to B is a subset of $A \times B$.

Definition
Let A, B be sets. A relation R from A to B is a subset of $A \times B$.

Definition

Let A, B be sets. A relation R from A to B is a subset of $A \times B$. For $(a, b) \in R$, we say a and b are R-related and also write $a R b$. If $A=B$, then R is a relation on A.

Example

Definition

Let A, B be sets. A relation R from A to B is a subset of $A \times B$. For $(a, b) \in R$, we say a and b are R-related and also write $a R b$. If $A=B$, then R is a relation on A.

Example

1. $R:=\{(0,0),(0,1),(1,1)\}$ is a relation on $A=\{0,1\}$. Here $0 R 0,0 R 1,1 R 1$.

Definition

Let A, B be sets. A relation R from A to B is a subset of $A \times B$. For $(a, b) \in R$, we say a and b are R-related and also write $a R b$. If $A=B$, then R is a relation on A.

Example

1. $R:=\{(0,0),(0,1),(1,1)\}$ is a relation on $A=\{0,1\}$. Here $0 R 0,0 R 1,1 R 1$.

Definition

Let A, B be sets. A relation R from A to B is a subset of $A \times B$. For $(a, b) \in R$, we say a and b are R-related and also write $a R b$. If $A=B$, then R is a relation on A.

Example

1. $R:=\{(0,0),(0,1),(1,1)\}$ is a relation on $A=\{0,1\}$. Here $0 R 0,0 R 1,1 R 1$.
This relation is also known as \leq on $\{0,1\}$, in short $R=\leq$.

Definition

Let A, B be sets. A relation R from A to B is a subset of $A \times B$. For $(a, b) \in R$, we say a and b are R-related and also write $a R b$. If $A=B$, then R is a relation on A.

Example

1. $R:=\{(0,0),(0,1),(1,1)\}$ is a relation on $A=\{0,1\}$. Here $0 R 0,0 R 1,1 R 1$.
This relation is also known as \leq on $\{0,1\}$, in short $R=\leq$.
2. $S:=\{(x, y) \in \mathbb{Z} \times\{0,1\}: x \bmod 2=y\}$
relation from \mathbb{Z} to $\{0,1\}$
e.g. $4 S 0,3 S 1$ but $0 \$ 1$

Definition

Let A, B be sets. A relation R from A to B is a subset of $A \times B$.
For $(a, b) \in R$, we say a and b are R-related and also write $a R b$.
If $A=B$, then R is a relation on A.

Example

1. $R:=\{(0,0),(0,1),(1,1)\}$ is a relation on $A=\{0,1\}$. Here $0 R 0,0 R 1,1 R 1$.
This relation is also known as \leq on $\{0,1\}$, in short $R=\leq$.
2. $S:=\{(x, y) \in \mathbb{Z} \times\{0,1\}: x \bmod 2=y\}$
relation from \mathbb{Z} to $\{0,1\}$
e.g. 4S0, $3 S 1$ but $0 \$ 1$
3. $T:=\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: n \mid x-y\}$ for fixed $n \in \mathbb{N}$
$T=\equiv_{n}$, the congruence modulo n
e.g. $0 \equiv_{n} n \equiv_{n} 2 n \ldots$

Special relations 1: functions

Definition
A relation R from A to B is a function if
$\forall a \in A \exists$ unique $b \in B: a R b$

Special relations 1: functions

Definition
A relation R from A to B is a function if
$\forall a \in A \exists$ unique $b \in B: a R b$

Special relations 1: functions

Definition
A relation R from A to B is a function if

$$
\forall a \in A \exists \text { unique } b \in B: a R b
$$

Then we usually write $R(a)=b$.

Special relations 1: functions

Definition
A relation R from A to B is a function if

$$
\forall a \in A \exists \text { unique } b \in B: a R b
$$

Then we usually write $R(a)=b$.
Example
$f=\left\{\left(x, x^{2}\right): x \in \mathbb{R}\right\}$

Special relations 1: functions

Definition
A relation R from A to B is a function if

$$
\forall a \in A \exists \text { unique } b \in B: a R b
$$

Then we usually write $R(a)=b$.
Example
$f=\left\{\left(x, x^{2}\right): x \in \mathbb{R}\right\}$

Special relations 1: functions

Definition
A relation R from A to B is a function if

$$
\forall a \in A \exists \text { unique } b \in B: a R b
$$

Then we usually write $R(a)=b$.
Example
$f=\left\{\left(x, x^{2}\right): x \in \mathbb{R}\right\}$ is also written as $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{2}$ or $f(x)=x^{2}$

Special relations 1: functions

Definition
A relation R from A to B is a function if

$$
\forall a \in A \exists \text { unique } b \in B: a R b
$$

Then we usually write $R(a)=b$.
Example
$f=\left\{\left(x, x^{2}\right): x \in \mathbb{R}\right\}$ is also written as $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{2}$ or $f(x)=x^{2}$
More about functions later.

Important properties of relations

Definition
Let R be a relation on A. Then

Important properties of relations

Definition
Let R be a relation on A. Then

1. R is reflexive if $\forall x \in A: x R x$
(every element is related to itself)

Important properties of relations

Definition

Let R be a relation on A. Then

1. R is reflexive if $\forall x \in A: x R x$
(every element is related to itself)
2. R is symmetric if $\forall x, y \in A: x R y \Rightarrow y R x$
(if x is related to y, then also y is related to x)

Important properties of relations

Definition

Let R be a relation on A. Then

1. R is reflexive if $\forall x \in A: x R x$
(every element is related to itself)
2. R is symmetric if $\forall x, y \in A: x R y \Rightarrow y R x$
(if x is related to y, then also y is related to x)
3. R is antisymmetric if $\forall x, y \in A:(x R y \wedge y R x) \Rightarrow x=y$ (x is related to y and conversely only if $x=y$)

Important properties of relations

Definition

Let R be a relation on A. Then

1. R is reflexive if $\forall x \in A: x R x$
(every element is related to itself)
2. R is symmetric if $\forall x, y \in A: x R y \Rightarrow y R x$
(if x is related to y, then also y is related to x)
3. R is antisymmetric if $\forall x, y \in A:(x R y \wedge y R x) \Rightarrow x=y$ (x is related to y and conversely only if $x=y$)
4. R is transitive if $\forall x, y, z \in A:(x R y \wedge y R z) \Rightarrow x R z$
(if x is related to y and y is related to z, then also x to z)

Important properties of relations

Definition

Let R be a relation on A. Then

1. R is reflexive if $\forall x \in A: x R x$
(every element is related to itself)
2. R is symmetric if $\forall x, y \in A: x R y \Rightarrow y R x$
(if x is related to y, then also y is related to x)
3. R is antisymmetric if $\forall x, y \in A:(x R y \wedge y R x) \Rightarrow x=y$ (x is related to y and conversely only if $x=y$)
4. R is transitive if $\forall x, y, z \in A:(x R y \wedge y R z) \Rightarrow x R z$
(if x is related to y and y is related to z, then also x to z)

Important properties of relations

Definition

Let R be a relation on A. Then

1. R is reflexive if $\forall x \in A: x R x$
(every element is related to itself)
2. R is symmetric if $\forall x, y \in A: x R y \Rightarrow y R x$
(if x is related to y, then also y is related to x)
3. R is antisymmetric if $\forall x, y \in A:(x R y \wedge y R x) \Rightarrow x=y$ (x is related to y and conversely only if $x=y$)
4. R is transitive if $\forall x, y, z \in A:(x R y \wedge y R z) \Rightarrow x R z$ (if x is related to y and y is related to z, then also x to z)

Beware: antisymmetric is not the same as 'not symmetric'.

Example
\leq on \mathbb{Z}

Example
\leq on \mathbb{Z}

- reflexive:

How to show a quantified statement, like $\forall x \in \mathbb{Z}: x R x$?

Example
\leq on \mathbb{Z}

- reflexive:

How to show a quantified statement, like $\forall x \in \mathbb{Z}: x R x$?

Example
\leq on \mathbb{Z}

- reflexive:

How to show a quantified statement, like $\forall x \in \mathbb{Z}: x R x$?
Proof. Let $x \in \mathbb{Z}$ (arbitrary). Show $x R x$.

Example
\leq on \mathbb{Z}

- reflexive:

How to show a quantified statement, like $\forall x \in \mathbb{Z}: x R x$?
Proof. Let $x \in \mathbb{Z}$ (arbitrary). Show $x R x$.
Let $x \in \mathbb{Z}$. Then $x \leq x$.

Example

\leq on \mathbb{Z}

- reflexive:

How to show a quantified statement, like $\forall x \in \mathbb{Z}: x R x$? Proof. Let $x \in \mathbb{Z}$ (arbitrary). Show $x R x$.

Let $x \in \mathbb{Z}$. Then $x \leq x$.

- not symmetric:

How to show a quantified statement, like $\forall x, y \in \mathbb{Z}: x R y \Rightarrow$ $y R x$, is false?

Example

\leq on \mathbb{Z}

- reflexive:

How to show a quantified statement, like $\forall x \in \mathbb{Z}: x R x$? Proof. Let $x \in \mathbb{Z}$ (arbitrary). Show $x R x$.

Let $x \in \mathbb{Z}$. Then $x \leq x$.

- not symmetric:

How to show a quantified statement, like $\forall x, y \in \mathbb{Z}: x R y \Rightarrow$ $y R x$, is false?

Example
\leq on \mathbb{Z}

- reflexive:

How to show a quantified statement, like $\forall x \in \mathbb{Z}: x R x$? Proof. Let $x \in \mathbb{Z}$ (arbitrary). Show $x R x$.

Let $x \in \mathbb{Z}$. Then $x \leq x$.

- not symmetric:

How to show a quantified statement, like $\forall x, y \in \mathbb{Z}: x R y \Rightarrow$ $y R x$, is false?

By counterexample. Give explicit $x, y \in \mathbb{Z}$ such that $x R y$ but not $y R x$.

Example
\leq on \mathbb{Z}

- reflexive:

How to show a quantified statement, like $\forall x \in \mathbb{Z}: x R x$? Proof. Let $x \in \mathbb{Z}$ (arbitrary). Show $x R x$.

Let $x \in \mathbb{Z}$. Then $x \leq x$.

- not symmetric:

How to show a quantified statement, like $\forall x, y \in \mathbb{Z}: x R y \Rightarrow$ $y R x$, is false?

By counterexample. Give explicit $x, y \in \mathbb{Z}$ such that $x R y$ but not $y R x$.

Example, $0 \leq 1$ but $1 \not \leq 0$

Example, continued
\leq on \mathbb{Z} :

Example, continued
\leq on \mathbb{Z} :

- antisymmetric: Let $x, y \in \mathbb{Z}$. Assume $x \leq y$ and $y \leq x$. Then $x=y$.

Example, continued
\leq on \mathbb{Z} :

- antisymmetric: Let $x, y \in \mathbb{Z}$. Assume $x \leq y$ and $y \leq x$. Then $x=y$.
- transitive: Let $x, y, z \in \mathbb{Z}$. Assume $x \leq y$ and $y \leq z$. Then $x \leq z$.

Example, continued
\leq on \mathbb{Z} :

- antisymmetric: Let $x, y \in \mathbb{Z}$. Assume $x \leq y$ and $y \leq x$. Then $x=y$.
- transitive: Let $x, y, z \in \mathbb{Z}$. Assume $x \leq y$ and $y \leq z$. Then $x \leq z$.
- no function: by example, $0 \leq 1$ and $0 \leq 2$

Example, continued

\leq on \mathbb{Z} :

- antisymmetric: Let $x, y \in \mathbb{Z}$. Assume $x \leq y$ and $y \leq x$. Then $x=y$.
- transitive: Let $x, y, z \in \mathbb{Z}$. Assume $x \leq y$ and $y \leq z$. Then $x \leq z$.
- no function: by example, $0 \leq 1$ and $0 \leq 2$

Example
$=$ is reflexive, symmetric, antisymmetric, transitive, a function.

Example

\equiv_{n} on \mathbb{Z} for $n \in \mathbb{N}, n>1$

Example

\equiv_{n} on \mathbb{Z} for $n \in \mathbb{N}, n>1$

- reflexive: Let $x \in \mathbb{Z}$. Then $x \equiv_{n} x$ since $n \mid x-x$.

Example

\equiv_{n} on \mathbb{Z} for $n \in \mathbb{N}, n>1$

- reflexive: Let $x \in \mathbb{Z}$. Then $x \equiv_{n} x$ since $n \mid x-x$.
- symmetric: Let $x, y \in \mathbb{Z}$. Assume $x \equiv_{n} y$. Then $n \mid x-y$ implies $n \mid \underbrace{y-x}_{-(x-y)}$. Hence $y \equiv_{n} x$.

Example

\equiv_{n} on \mathbb{Z} for $n \in \mathbb{N}, n>1$

- reflexive: Let $x \in \mathbb{Z}$. Then $x \equiv_{n} x$ since $n \mid x-x$.
- symmetric: Let $x, y \in \mathbb{Z}$. Assume $x \equiv_{n} y$. Then $n \mid x-y$ implies $n \mid \underbrace{y-x}_{-(x-y)}$. Hence $y \equiv_{n} x$.
- not antisymmetric: By example, $n \equiv_{n} 0$ and $0 \equiv_{n} n$ but $n \neq 0$.

Example

\equiv_{n} on \mathbb{Z} for $n \in \mathbb{N}, n>1$

- reflexive: Let $x \in \mathbb{Z}$. Then $x \equiv_{n} x$ since $n \mid x-x$.
- symmetric: Let $x, y \in \mathbb{Z}$. Assume $x \equiv_{n} y$. Then $n \mid x-y$ implies $n \mid \underbrace{y-x}_{-(x-y)}$. Hence $y \equiv_{n} x$.

$$
-(x-y)
$$

- not antisymmetric: By example, $n \equiv_{n} 0$ and $0 \equiv_{n} n$ but $n \neq 0$.
- transitive: Let $x, y, z \in \mathbb{Z}$. Assume $x \equiv_{n} y$ and $y \equiv_{n} z$. Then $n \mid x-y$ and $n \mid y-z$. So $n \mid \underbrace{(x-y)+(y-z)}_{x-z}$. Hence $x \equiv_{n} z$.

Example

\equiv_{n} on \mathbb{Z} for $n \in \mathbb{N}, n>1$

- reflexive: Let $x \in \mathbb{Z}$. Then $x \equiv_{n} x$ since $n \mid x-x$.
- symmetric: Let $x, y \in \mathbb{Z}$. Assume $x \equiv_{n} y$. Then $n \mid x-y$ implies $n \mid \underbrace{y-x}_{-(x-y)}$. Hence $y \equiv_{n} x$.

$$
-(x-y)
$$

- not antisymmetric: By example, $n \equiv_{n} 0$ and $0 \equiv_{n} n$ but $n \neq 0$.
- transitive: Let $x, y, z \in \mathbb{Z}$. Assume $x \equiv_{n} y$ and $y \equiv_{n} z$. Then $n \mid x-y$ and $n \mid y-z$. So $n \mid \underbrace{(x-y)+(y-z)}_{x-z}$. Hence $x \equiv_{n} z$.
- no function: By example, $0 \equiv_{n} 0$ and $0 \equiv_{n} n$

