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Life (Math) is full of statements how 2 things relate to
each other

Example
x=3
—-2<5
3]12

1eN

X = x2
5=1 (mod 2)
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Example

Relation R between animals {ant, bees} and properties
{carnivorous, flying, statebuilding}:

‘ carnivorous flying statebuilding
ants X X
bees X X

R is represented by those pairs that go together:

R ={(a,c),(a,s),(b,f),(b,s)} C{a, b} x{c,f,s}
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Definition

Let A, B be sets. A relation R from A to B is a subset of A x B.
For (a,b) € R, we say a and b are R-related and also write aRb.
If A= B, then R is a relation on A.

Example
1. R:={(0,0),(0,1),(1,1)} is a relation on A = {0, 1}.
Here OR0,0R1, 1R1.
This relation is also known as < on {0, 1}, in short R =<.
2.5 ={(x,y) €Zx{0,1} : x mod2=y}
relation from Z to {0,1}
e.g. 450, 351 but 0 1
3. T:={(x,y) €ZXZ : n|x—y} for fixed n € N
T = =,, the congruence modulo n
eg. 0=,n=,2n...
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Special relations 1: functions

Definition
A relation R from A to B is a function if

VYa € A dunique b € B: aRb

Then we usually write R(a) = b.

Example
f={(x,x?) : x € R} is also written as f: R = R, x + x? or
f(x) = x?

More about functions later.
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Important properties of relations

Definition
Let R be a relation on A. Then

1. R is reflexive if Vx € A: xRx
(every element is related to itself)

2. R is symmetric if Vx,y € A: xRy = yRx
(if x is related to y, then also y is related to x)

3. R is antisymmetric if Vx,y € A: (xRy AyRx) = x =y
(x is related to y and conversely only if x = y)

4. R is transitive if Vx,y,z € A: (xRy A yRz) = xRz
(if x is related to y and y is related to z, then also x to z)

Beware: antisymmetric is not the same as ‘not symmetric'.
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> reflexive:

How to show a quantified statement, like Vx € Z : xRx?

Proof. Let x € Z (arbitrary). Show xRx.

Let x € Z. Then x < x.

P> not symmetric:

How to show a quantified statement, like Vx,y € Z : xRy =
yRx, is false?

By counterexample. Give explicit x,y € Z such that xRy
but not yRx.

Example, 0 < 1but1£0
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Example, continued
< on Z:
P antisymmetric: Let x,y € Z. Assume x <y and y < x. Then
xX=y.
> transitive: Let x,y,z € Z. Assume x < y and y < z. Then
x < z.

» no function: by example, 0 < 1and 0 <2

Example
= is reflexive, symmetric, antisymmetric, transitive, a function.
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