RELATIONS

PETER MAYR (MATH 2001, CU BOULDER)

1. Basic properties

Definition. Let A, B be sets. A relation R from A to B is a subset of $A \times B$.

For $(a, b) \in R$, we say a and b are related and also write $a R b$. If $A=B$, then R is a relation on A.

Example. $R=\{(0,0),(0,1),(1,1)\}$ is a relation on $A=\{0,1\}$.
Here $0 R 0,0 R 1,1 R$. This relation is also known as \leq.
Definition. Let R be a relation on A. Then
(1) R is reflexive if $\forall x \in A: x R x$
(every element is related to itself)
(2) R is symmetric if $\forall x, y \in A: x R y \Rightarrow y R x$
(if x is related to y, then also y is related to x)
(3) R is antisymmetric if $\forall x, y \in A:(x R y \wedge y R x) \Rightarrow x=y$
(x is related to y and y is related to x only if $x=y$)
(4) R is transitive if $\forall x, y, z \in A:(x R y \wedge y R z) \Rightarrow x R z$

Note that antisymmetric is not the same as 'not symmetric'.
Definition. A relation R on A is
(1) an equivalence relation if R is reflexive, symmetric, transitive,
(2) a partial order if R is reflexive, antisymmetric, transitive.

Example.

(1) Equivalence relations are used for classifying elements of A. Examples are $=, \equiv_{n}$ on $\mathbb{Z}(n \in \mathbb{N})$, has the same absolute value on \mathbb{R}, has the same cardinality on sets.
(2) Partial orders are used for ordering elements of A. Examples are $=, \leq$ on \mathbb{R}, \mid on \mathbb{N}, \subseteq on sets

2. Equivalences and partitions

Definition. For an equivalence relation R on A and $a \in A$,

$$
[a]_{R}:=\{x \in A: x R a\}
$$

is the equivalence class of a.
Theorem 1. Let R be an equivalence on A, let $a, b \in A$. Then
(1) $[a]=[b]$ iff $a R b$;
(2) $[a] \cap[b]=\emptyset$ iff $a \not R b$;
(3) $\bigcup_{a \in A}[a]=A$.

Hence the whole set A is partitioned into disjoint equivalence classes.
Definition. A partition a set A is a set of non-empty subsets $\left\{A_{i}: i \in\right.$ $I\}$ such that
(1) $A_{i} \cap A_{j}=\emptyset$ for all distinct $i, j \in I$,
(2) $\bigcup_{i \in I} A_{i}=A$.

Every equivalence on A gives a partition of A and conversely.
Corollary 2. Let R be an equivalence on A. Then the set of equivalence classes $\{[a]: a \in A\}$ is a partition of A.
Theorem 3. Let $\left\{A_{i}: i \in I\right\}$ a partition of A. For $a, b \in A$ define

$$
a \sim b \text { if } a, b \in A_{i} \text { for some } i \in I .
$$

Then \sim is an equivalence relation on A with classes $\left\{A_{i}: i \in I\right\}$.

3. Integers modulo n

One particular important equivalence relation is \equiv_{n} on \mathbb{Z} for $n \in \mathbb{N}$. The class of $a \in \mathbb{Z}$ is

$$
[a]=\{a+z n: z \in \mathbb{Z}\} .
$$

Note $[n]=[0]$. The set of classes

$$
\mathbb{Z}_{n}:=\{[0],[1],[2], \ldots,[n-1]\}
$$

is called the integers modulo n.
Define,+- , on \mathbb{Z}_{n} by

$$
\begin{aligned}
{[a]+[b] } & :=[a+b] \\
-[a] & :=[-a] \\
{[a] \cdot[b] } & :=[a \cdot b]
\end{aligned}
$$

These operations are well-defined (independent of the choice of representatives for each class) and satisfy the same laws as,,+- on \mathbb{Z} : associativity, commutativity, distributivity, etc.

