PROOF STRATEGIES

PETER MAYR (MATH 2001, CU BOULDER)

1. Conditional statements

How to prove "If P, then Q":

(1) **Direct proof:**

Assume P holds. Show that Q holds.

(2) Contrapositive proof:

Assume ~ Q. Show ~ P.

Then you know $\sim Q \Rightarrow \sim P$ which is logically equivalent to $P \Rightarrow Q$.

(3) **Proof by contradiction**:

Assume $P \land \sim Q$. Show this implies FALSE (a contradiction). (see below)

2. BICONDITIONAL STATEMENTS

How to prove "P if and only if Q": Prove "If P, then Q" and "If Q, then P".

3. PROOF BY CONTRADICTION

Instead of proving some statement P directly:

Assume its negation \sim P holds. Show this implies FALSE (a contradiction to something known to be true).

Then $\sim P$ must have been FALSE. Hence P is TRUE.

4. INDUCTION

To show that a statement S_n is true for every $n \in \mathbb{N}$:

- (1) **basis step:** Show S_1 .
- (2) inductive step: Show $S_k \Rightarrow S_{k+1}$ for any $k \in \mathbb{N}$.

For strong induction the induction step is instead:

Show $(S_1 \land \cdots \land S_k) \Rightarrow S_{k+1}$ for any $k \in \mathbb{N}$.

Date: March 23, 2018.