NEGATING STATEMENTS

PETER MAYR (MATH 2001, CU BOULDER)

When asked to negate a statement like 'If P, then Q', it is not enough to just state 'It is not true that if P , then Q '. You need to simplify the negated statement as far as possible to see what it means.

Example 1. Simplify for statements P, Q :
(1) $\sim(P \wedge Q)=$
(2) $\sim(P \vee Q)=$
(3) $\sim(P \Rightarrow Q)=$
(4) $\sim(P \Leftrightarrow Q)=$
(5) $\sim(\forall x \in A: P(x))=$
(6) $\sim(\exists x \in A: P(x))=$

When negating a concrete example, first determine which of the above forms it has. Rewrite it in symbolic logic (using quantifiers, $\wedge, \vee, \sim, \Rightarrow$ if necessary). Then it becomes easy to negate it using the above rules.

Example 2. Negate:

(1) If x is even, then x^{2} is even.
(2) x is even only if $\frac{x}{2}$ is an integer.
(3) If x is odd and y is odd, then $x+y$ is even.
(4) x is even iff x^{2} is even.
(5) For every even integer x, also x^{2} is even.
(6) For every prime p there is a prime q with $q>p$.
(7) There exists $n \in \mathbb{N}$ such that $n>p$ for all primes p.

