COMMENTS ON WRITING PROJECT 'FUNCTIONS'

PETER MAYR

The following issues came up repeatedly in the previous assignment of counting functions.

- (1) Before submission, always proofread what you wrote. Check for typos, logical inconsistencies, anything that the reader may stumble over.
- (2) Always write in complete sentences. Something like 'Injective: $\forall x, y \in A : f(x) = f(y) \Rightarrow x = y$ ' or 'All functions: n^{k} ' is not selfcontained and does not make sense.
- (3) Use the definition environment to explain technical terms like 'injective,...' before their first use.
- (4) In every definition, theorem, ... specify and quantify all variables k, n, \ldots that you use.
- (5) Be careful to state under which conditions your results hold. Don't forget about any special cases.

Also the special cases like 'there are no surjective functions from $\{1, \ldots, k\}$ to $\{1, \ldots, n\}$ if k < n' require a proof.

(6) Use the definitions you learned in class in your proofs, not some selfmade approximations.

A rather frequent mistake is to say 'a function $f: A \to B$ is injective if it maps every $x \in A$ to a unique element $f(x) \in B$ '. This means that x is mapped to exactly one value f(x). But this is just the defining property of a function: 'it maps every x in the domain to exactly one y in the codomain.' This is not injectivity!

If you want to describe injectivity colloquially, you can say: f is injective if it maps any pair of distinct elements to distinct elements.

One example how you can organize your main theorem efficiently:

Theorem. Let $k, n \in \mathbb{N}$ and write $[k] := \{1, \ldots, k\}, [n] := \{1, \ldots, n\}.$ (1) There are n^k functions from [k] to [n]. (2) ...

Date: December 1, 2020.

PETER MAYR

(3) If k ≥ n, there are ∑_{i=0}ⁿ(-1)ⁱ (ⁿ_i)(n - i)^k surjective functions from [k] to [n]; if k < n, there are none.
(4) ...

Proof. . . .

(3) If k < n, no function $f: [k] \to [n]$ is surjective because ...

Assume $k \ge n$. To obtain the number of surjective functions $[k] \to [n]$ we take the number of all functions n^k and subtract the number of non-surjective functions, that is, those functions whose range is a proper subset of [n]. Now [n] has $\binom{n}{n-1}$ different subsets with n-1 elements. By (1) there are $(n-1)^k$ functions from [k] into any of these subsets, hence $\binom{n}{n-1}(n-1)^k$ non-surjective functions in total. However this overcounts the functions into any of the $\binom{n}{n-2}$ subsets with n-2 elements, which we have to add again. Then we need to subtract the functions into subsets with n-3 elements, and so forth. We use the Inclusion-Exclusion Principle to obtain that the number of surjections from [k] to [n] as

$$n^{k} - \binom{n}{(n-1)^{k}} + \binom{n}{(n-2)^{k}} - \dots \pm \binom{n}{1} 1^{k} = \sum_{i=1}^{n} \dots$$

 $\mathbf{2}$