Math 2001 - Assignment 13

Due December 4, 2020
(1) Let $f: A \rightarrow B, g: B \rightarrow C$. Show that
(a) If $g \circ f$ is injective, then f is injective.
(b) If $g \circ f$ is surjective, then g is surjective.

Hint: Use contrapositive proofs.
Give examples for f, g on $A=B=C=\mathbb{N}$ such that
(c) $g \circ f$ is injective but g is not injective;
(d) $g \circ f$ is surjective but f is not surjective.

Proof.
(a) Assume f is not injective, that is, we have $x, y \in A$ such that $x \neq y$ but $f(x)=f(y)$. Then $g(f(x))=g(f(y))$ as well. Hence $g \circ f$ is not injective.
(b) Assume g is not surjective, that is, $g(B) \neq C$. Since $g(f(A)) \subseteq g(B), g(f(A))$ cannot be all of C either. Hence $g \circ f$ is not surjective.
(c) If $g \circ f$ is injective, then g restricted to $f(A)$ has to be injective. But it does not matter what g does on $B-f(A)$. E.g., let $f: \mathbb{N} \rightarrow \mathbb{N}, x \mapsto 2 x, g: \mathbb{N} \rightarrow \mathbb{N}, x \mapsto\left\lceil\frac{x}{2}\right\rceil$ where $\lceil r\rceil$ is the smallest integer z such that $z \geq r$. Then $g \circ f=$ $\mathrm{id}_{\mathbb{N}}$ is injective but g is not.
(d) If $g \circ f$ is surjective, then $g(f(A))=C$ but it does mean that $f(A)$ needs to be all of B.
E.g. as in (c) $g \circ f=\operatorname{id}_{\mathbb{N}}$ is surjective but f is not.
(2) (a) Show that

$$
f: \mathbb{R}-\{1\} \rightarrow \mathbb{R}-\{2\}, x \mapsto \frac{2 x+1}{x-1}
$$

is bijective.
(b) Determine f^{-1}.

Solution. (a) Injective: Let $x, y \in \mathbb{R}-\{1\}$ such that $f(x)=$ $f(y)$. Show $x=y$. We have

$$
\begin{aligned}
\frac{2 x+1}{x-1} & =\frac{2 y+1}{y-1} \\
(2 x+1)(y-1) & =(2 y+1)(x-1) \\
\ldots & =\ldots \\
x & =y
\end{aligned}
$$

Hence f is injective.

Surjective: Let $y \in \mathbb{R}-\{2\}$ such that $f(x)=y$. Solve for $x \in \mathbb{R}-\{1\}$.

$$
\begin{aligned}
y & =\frac{2 x+1}{x-1} \\
y(x-1) & =2 x+1 \\
-y-1 & =x(-y+2) \\
\frac{y+1}{y-2} & =x
\end{aligned}
$$

So we found $x \in \mathbb{R}-\{1\}$ such that $f(x)=y$ and hence f is surjective.

Thus f is bijective.
(b) From the proof of surjectivity, we see

$$
f^{-1}: \mathbb{R}-\{2\} \rightarrow \mathbb{R}-\{1\}, y \mapsto \frac{y+1}{y-2}
$$

Note. Checking surjectivity and finding the inverse is pretty much the same work. So you may just try to find f^{-1} straight away without bothering about injectivity and surjectivity first. If $f(x)=y$ does not have a unique solution, then you'll see a failure of injectivity or surjectivity anyway.
(3) Try to you find an inverse for $f: \mathbb{R} \rightarrow \mathbb{R}^{+}, x \mapsto e^{x^{3}+1}$. Is f bijective?
Solution: Given $y \in \mathbb{R}^{+}$, find $x \in \mathbb{R}$ such that $f(x)=y$. So we solve

$$
\begin{aligned}
e^{x^{3}+1} & =y \\
x^{3}+1 & =\log y \\
x & =(\log y-1)^{\frac{1}{3}}
\end{aligned}
$$

So

$$
f^{-1}: \mathbb{R}^{+} \rightarrow \mathbb{R}, y \mapsto(\log y-1)^{\frac{1}{3}}
$$

By checking $f \circ f^{-1}=\operatorname{id}_{\mathbb{R}^{+}}$and $f^{-1} \circ f=\operatorname{id}_{\mathbb{R}}$ we see that f is bijective.
(4) Find the inverse for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(x, y) \mapsto(3 x+y, x-2 y)$.

Solution: Given $(u, v) \in \mathbb{R}^{2}$, find $(x, y) \in \mathbb{R}^{2}$ such that $f(x, y)=$ (u, v). So we solve

$$
\begin{aligned}
& 3 x+y=u \\
& x-2 y=v
\end{aligned}
$$

Multiplying the second equation by 3 and subtracting from the first yields

$$
7 y=u-3 v
$$

So $y=\frac{u-3 v}{7}$. Inserting in the first equation yields $x=\frac{2 u+v}{7}$. Hence

$$
f^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(u, v) \mapsto\left(\frac{2 u+v}{7}, \frac{u-3 v}{7}\right)
$$

(5) Let U be a set, and let c be the function on the power set of U that maps every set to its complement in U, i.e.,

$$
c: P(U) \rightarrow P(U), X \mapsto \bar{X} .
$$

Determine c^{-1} if it exists.
Solution: Given $Y \in P(U)$, find $X \in P(U)$ such that $\bar{X}=Y$.
Take the complement again to get $X=\overline{\bar{X}}=\bar{Y}$.
Hence $c=c^{-1}$ is its own inverse. This can also be seen by $c \circ c=\operatorname{id}_{P(U)}$.
(6) Give an explicit bijection $f:[0,1] \rightarrow(0,1)$. Show that your function f is bijective.

Hint: Consider some sequence $0,1, \ldots$ in $[0,1]$ and use the idea of Hilbert's hotel.
Solution: We need f to push the endpoints 0,1 into the open interval $(0,1)$. But then $f(0), f(1)$ have to be mapped be pushed somewhere else again and so forth. This works like for a bijection $\mathbb{N} \rightarrow \mathbb{N}-\{1,2\}$ (Hilbert's hotel).

Fix a (countable) sequence in $(0,1)$, say $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$, push each element 2 steps down and map 0,1 to the first 2 elements that are now free. The remaining elements of $(0,1)$ can stay at their place. Formally define

$$
f:[0,1] \rightarrow(0,1), x \mapsto \begin{cases}1 / 2 & \text { if } x=0 \\ \frac{1}{n+2} & \text { if } x=\frac{1}{n} \text { for } n \in \mathbb{N} \\ x & \text { else. }\end{cases}
$$

From the definition by cases its clear that f is injective and surjective.

