Math 2001 - Assignment 13

Due December 4, 2020
(1) Let $f: A \rightarrow B, g: B \rightarrow C$. Show that
(a) If $g \circ f$ is injective, then f is injective.
(b) If $g \circ f$ is surjective, then g is surjective.

Hint: Use contrapositive proofs.
Give examples for f, g on $A=B=C=\mathbb{N}$ such that
(c) $g \circ f$ is injective but g is not injective;
(d) $g \circ f$ is surjective but f is not surjective.
(2) (a) Show that

$$
f: \mathbb{R}-\{1\} \rightarrow \mathbb{R}-\{2\}, x \mapsto \frac{2 x+1}{x-1}
$$

is bijective.
(b) Determine f^{-1}.
(3) Try to you find an inverse for $f: \mathbb{R} \rightarrow \mathbb{R}^{+}, x \mapsto e^{x^{3}+1}$. Is f bijective?
(4) Find the inverse for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(x, y) \mapsto(3 x+y, x-2 y)$.
(5) Let U be a set, and let c be the function on the power set of U that maps every set to its complement in U, i.e.,

$$
c: P(U) \rightarrow P(U), X \mapsto \bar{X}
$$

Determine c^{-1} if it exists.
(6) Give an explicit bijection $f:[0,1] \rightarrow(0,1)$. Show that your function f is bijective.

Hint: Consider some sequence $0,1, \ldots$ in $[0,1]$ and use the idea of Hilbert's hotel.

