Math 2001 - Assignment 13

Due December 4, 2020

- (1) Let $f: A \to B, g: B \to C$. Show that
 - (a) If $g \circ f$ is injective, then f is injective.
 - (b) If $g \circ f$ is surjective, then g is surjective.

Hint: Use contrapositive proofs.

Give examples for f, g on $A = B = C = \mathbb{N}$ such that

- (c) $g \circ f$ is injective but g is not injective;
- (d) $g \circ f$ is surjective but f is not surjective.
- (2) (a) Show that

$$f: \mathbb{R} - \{1\} \to \mathbb{R} - \{2\}, x \mapsto \frac{2x+1}{x-1}$$

is bijective.

- (b) Determine f^{-1} .
- (3) Try to you find an inverse for $f \colon \mathbb{R} \to \mathbb{R}^+$, $x \mapsto e^{x^3+1}$. Is f bijective?
- (4) Find the inverse for $f \colon \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (3x + y, x 2y)$.
- (5) Let U be a set, and let c be the function on the power set of U that maps every set to its complement in U, i.e.,

$$c \colon P(U) \to P(U), X \mapsto \bar{X}.$$

Determine c^{-1} if it exists.

(6) Give an explicit bijection $f: [0,1] \to (0,1)$. Show that your function f is bijective.

Hint: Consider some sequence $0, 1, \ldots$ in [0, 1] and use the idea of Hilbert's hotel.