Math 2001 - Assignment 12

Due November 20, 2020
(1) Complete the proof of the following:

Theorem. Let $\left\{A_{i}: i \in I\right\}$ be a partition of a set A. Then

$$
x \sim y \text { if } \exists i \in I: x, y \in A_{i}
$$

defines an equivalence relation on A with equivalence classes A_{i} for $i \in I$. Proof: For reflexivity: Let $x \in A$. Since $A=\bigcup_{i \in I} A_{i}$ by the definition of a partition, we have $i \in I$ such that $x \in \underline{A_{i}}$. Hence $x \sim \underline{x}$.

For symmetry: Let $x, y \in A$. Assume $x \sim y$, that is, $x, y \in A_{i}$ for some $i \in I$. Then $y, x \in A_{i}$ and $y \sim x$.

For transitivity: Let $x, y, z \in A$. Assume $x \sim y$ and $y \sim z$. Then we have $i \in I$ such that $x, y \in A_{i}$ and $j \in I$ such that $y, z \in A_{j}$. Since $\underline{y} \in A_{i} \cap A_{j}$, we have $\underline{i=j}$ by the definition of a partition. Hence $\underline{x, z \in A_{i}}$ and $x \sim z$.

This completes the proof that \sim is an equivalence relation.
Finally for every $x \in A$, the class $\left[\overline{x]_{\sim}=\underline{A_{i}} \text { for the unique } i \in I \text { such }}\right.$ that $x \in \underline{A_{i}}$.
(2) (a) Given finite sets A and B. How many different relations are there from A to B ?
Solution: Since relations are just subsets of $A \times B$, there are $\mid P(A \times$ $B) \mid=2^{|A||B|}$ many.
(b) How many different equivalence relations are there on $A=\{1,2,3\}$? Describe them all by listing the partitions of A.
Solution: There are 5 ways to partition A into equivalence classes:
$\{1\},\{2\},\{3\}$ (these are the classes of $=$)
$\{1\},\{2,3\}$
$\{1,3\},\{2\}$
$\{1,2\},\{3\}$
$\{1,2,3\}$
Hence there are 5 partitions/equivalence relations.
(3) (a) Give the tables for addition and multiplication for \mathbb{Z}_{6}.

Solution:

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
\vdots						

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
\vdots						

(b) Dividing by $[a]$ in \mathbb{Z}_{n} means solving an equation $[a] \cdot[x]=[1]$ for $[x]$. Solve $[8] \cdot[x]=[1]$ in \mathbb{Z}_{37}.
Hint: Use the Euclidean algorithm to solve $8 x \equiv 1 \bmod 37$.
Solution: Solve $8 x+37 y=1$ by the Euclidean algorithm to get the Bezout coefficient $x=14$.
(4) (a) Give domain, codomain, and range of $f: \mathbb{Z} \rightarrow \mathbb{N}, x \mapsto x^{2}+1$. What is $f(3)$?
(b) Is f one-to-one, onto, bijective?
(c) Determine $f(\{2 x: x \in \mathbb{Z}\})$ and $f^{-1}(\{1,2,3, \ldots, 10\})$.

Solution.
(a) domain \mathbb{Z}, codomain \mathbb{N}, range $\left\{x^{2}+1: x \in \mathbb{Z}\right\}, f(3)=10$
(b) not injective since e.g. $f(1)=f(-1)$, not surjective since e.g. $\nexists x \in \mathbb{Z}: f(x)=3$, hence not bijective
(c) $f(\{2 x: x \in \mathbb{Z}\})=\left\{4 x^{2}+1: x \in \mathbb{Z}\right\}$, $f^{-1}(\{1,2,3, \ldots, 10\})=\{-3,-2,-1,0,1,2,3\}$
(5) Give examples for
(a) a function $f: \mathbb{N} \rightarrow \mathbb{N}$ that is not injective but surjective;
(b) a function $g:\{1,2,3\} \rightarrow\{1,2\}$ that is neither injective nor surjective;
(c) a bijective function $h:\{1,2,3\} \rightarrow\{1,2\}$.

Solution.
(a) E.g. $f(x)=\left\lceil\frac{x}{2}\right\rceil$, the smallest integer greater or equal to $\frac{x}{2}$
(b) any constant function
(c) Not possible: Because the codomain is smaller than the domain, there is no injective h.
(6) Let A, B be finite sets with $|A|=|B|$, and let $f: A \rightarrow B$. Show that f is injective iff f is surjective.

Is this true for functions between infinite sets as well? Prove it or give counterexamples for each direction.
Proof. injective \Rightarrow surjective: Assume f is injective. Then $|A|=|f(A)|$. Since $f(A) \subseteq B$ and $|A|=|B|$, we get that $f(A)=B$. Hence f is surjective.
surjective \Rightarrow injective: Assume $f(A)=B$. Then $|f(A)|=|B|=|A|$ yields that f is injective. If $x \neq y$ in A, then $f(x) \neq f(y)$ because otherwise $|f(A)|<|A|$.

For infinite sets, e.g. $f: \mathbb{N} \rightarrow \mathbb{N}, x \mapsto x+1$ is injective but not surjective; exercise (5a) gives a surjective function that is not injective.

