Math 2001 - Assignment 12

Due November 20, 2020

(1) Complete the proof of the following:

Theorem. Let $\{A_i : i \in I\}$ be a partition of a set A. Then

$$x \sim y \text{ if } \exists i \in I : x, y \in A_i$$

defines an equivalence relation on A with equivalence classes A_i for $i \in I$. *Proof:* For reflexivity: Let $x \in A$. Since $A = \bigcup_{i \in I} A_i$ by the definition of

<u>a partition</u>, we have $i \in I$ such that $x \in \underline{A_i}$. Hence $x \sim \underline{x}$. For symmetry: Let $x, y \in A$. Assume $x \sim y$, that is, $x, y \in A_i$ for some

 $i \in I$. Then $y, x \in A_i$ and $y \sim x$.

For transitivity: Let $\underline{x, y, z \in A}$. Assume $x \sim y$ and $y \sim z$. Then we have $i \in I$ such that $\underline{x, y \in A_i}$ and $j \in I$ such that $\underline{y, z \in A_j}$. Since $\underline{y \in A_i \cap A_j}$, we have $\underline{i = j}$ by the definition of a partition. Hence $\underline{x, z \in A_i}$ and $x \sim z$.

This completes the proof that \sim is an equivalence relation.

Finally for every $x \in A$, the class $[x]_{\sim} = \underline{A_i}$ for the unique $i \in I$ such that $x \in \underline{A_i}$.

(2) (a) Given finite sets A and B. How many different relations are there from A to B?

Solution: Since relations are just subsets of $A \times B$, there are $|P(A \times B)| = 2^{|A||B|}$ many.

(b) How many different equivalence relations are there on $A = \{1, 2, 3\}$? Describe them all by listing the partitions of A.

Solution: There are 5 ways to partition A into equivalence classes: $\{1\}, \{2\}, \{3\}$ (these are the classes of =)

- $\{1\}, \{2, 3\}$
- $\{1,3\},\{2\}$
- $\{1,2\},\{3\}$
- $\{1, 2, 3\}$

Hence there are 5 partitions/equivalence relations.

(3) (a) Give the tables for addition and multiplication for \mathbb{Z}_6 . Solution:

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
:						

(b) Dividing by [a] in \mathbb{Z}_n means solving an equation $[a] \cdot [x] = [1]$ for [x]. Solve $[8] \cdot [x] = [1]$ in \mathbb{Z}_{37} .

Hint: Use the Euclidean algorithm to solve $8x \equiv 1 \mod 37$.

Solution: Solve 8x + 37y = 1 by the Euclidean algorithm to get the Bezout coefficient x = 14.

- (4) (a) Give domain, codomain, and range of $f: \mathbb{Z} \to \mathbb{N}, x \mapsto x^2 + 1$. What is f(3)?
 - (b) Is f one-to-one, onto, bijective?
 - (c) Determine $f(\{2x : x \in \mathbb{Z}\})$ and $f^{-1}(\{1, 2, 3, \dots, 10\})$.

Solution.

- (a) domain \mathbb{Z} , codomain \mathbb{N} , range $\{x^2 + 1 : x \in \mathbb{Z}\}, f(3) = 10$
- (b) not injective since e.g. f(1) = f(-1), not surjective since e.g. $\not\exists x \in \mathbb{Z} : f(x) = 3$, hence not bijective
- (c) $f(\{2x : x \in \mathbb{Z}\}) = \{4x^2 + 1 : x \in \mathbb{Z}\},\ f^{-1}(\{1, 2, 3, \dots, 10\}) = \{-3, -2, -1, 0, 1, 2, 3\}$
- (5) Give examples for
 - (a) a function $f: \mathbb{N} \to \mathbb{N}$ that is not injective but surjective;
 - (b) a function $g: \{1, 2, 3\} \rightarrow \{1, 2\}$ that is neither injective nor surjective;
 - (c) a bijective function $h: \{1, 2, 3\} \rightarrow \{1, 2\}$.

Solution.

- (a) E.g. $f(x) = \lfloor \frac{x}{2} \rfloor$, the smallest integer greater or equal to $\frac{x}{2}$
- (b) any constant function
- (c) Not possible: Because the codomain is smaller than the domain, there is no injective h.

2

(6) Let A, B be finite sets with |A| = |B|, and let $f: A \to B$. Show that f is injective iff f is surjective.

Is this true for functions between infinite sets as well? Prove it or give counterexamples for each direction.

Proof. injective \Rightarrow surjective: Assume f is injective. Then |A| = |f(A)|. Since $f(A) \subseteq B$ and |A| = |B|, we get that f(A) = B. Hence f is surjective.

surjective \Rightarrow injective: Assume f(A) = B. Then |f(A)| = |B| = |A|yields that f is injective. If $x \neq y$ in A, then $f(x) \neq f(y)$ because otherwise |f(A)| < |A|.

For infinite sets, e.g. $f: \mathbb{N} \to \mathbb{N}, x \mapsto x+1$ is injective but not surjective; exercise (5a) gives a surjective function that is not injective.