
Math 2001 - Assignment 12

Due November 20, 2020

(1) Complete the proof of the following:

Theorem. Let {Ai : i ∈ I} be a partition of a set A. Then

x ∼ y if ∃i ∈ I : x, y ∈ Ai

defines an equivalence relation on A with equivalence classes Ai for i ∈ I.

Proof: For reflexivity: Let x ∈ A. Since A =
⋃

i∈I Ai by the definition of

a partition, we have i ∈ I such that x ∈ Ai. Hence x ∼ x.
For symmetry: Let x, y ∈ A. Assume x ∼ y, that is, x, y ∈ Ai for some

i ∈ I. Then y, x ∈ Ai and y ∼ x.
For transitivity: Let x, y, z ∈ A. Assume x ∼ y and y ∼ z. Then

we have i ∈ I such that x, y ∈ Ai and j ∈ I such that y, z ∈ Aj. Since

y ∈ Ai∩Aj, we have i = j by the definition of a partition. Hence x, z ∈ Ai

and x ∼ z.
This completes the proof that ∼ is an equivalence relation.
Finally for every x ∈ A, the class [x]∼ = Ai for the unique i ∈ I such

that x ∈ Ai. �

(2) (a) Given finite sets A and B. How many different relations are there
from A to B?

Solution: Since relations are just subsets of A×B, there are |P (A×
B)| = 2|A||B| many.

(b) How many different equivalence relations are there on A = {1, 2, 3}?
Describe them all by listing the partitions of A.

Solution: There are 5 ways to partition A into equivalence classes:
{1}, {2}, {3} (these are the classes of =)
{1}, {2, 3}
{1, 3}, {2}
{1, 2}, {3}
{1, 2, 3}
Hence there are 5 partitions/equivalence relations.



2

(3) (a) Give the tables for addition and multiplication for Z6.

Solution:

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
...

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
...

(b) Dividing by [a] in Zn means solving an equation [a] · [x] = [1] for [x].
Solve [8] · [x] = [1] in Z37.
Hint: Use the Euclidean algorithm to solve 8x ≡ 1 mod 37.

Solution: Solve 8x+ 37y = 1 by the Euclidean algorithm to get the
Bezout coefficient x = 14.

(4) (a) Give domain, codomain, and range of f : Z→ N, x 7→ x2 + 1. What
is f(3)?

(b) Is f one-to-one, onto, bijective?
(c) Determine f({2x : x ∈ Z}) and f−1({1, 2, 3, . . . , 10}).
Solution.
(a) domain Z, codomain N, range {x2 + 1 : x ∈ Z}, f(3) = 10
(b) not injective since e.g. f(1) = f(−1),

not surjective since e.g. 6 ∃x ∈ Z : f(x) = 3,
hence not bijective

(c) f({2x : x ∈ Z}) = {4x2 + 1 : x ∈ Z},
f−1({1, 2, 3, . . . , 10}) = {−3,−2,−1, 0, 1, 2, 3}

(5) Give examples for
(a) a function f : N→ N that is not injective but surjective;
(b) a function g : {1, 2, 3} → {1, 2} that is neither injective nor surjective;
(c) a bijective function h : {1, 2, 3} → {1, 2}.
Solution.
(a) E.g. f(x) = dx

2
e, the smallest integer greater or equal to x

2

(b) any constant function
(c) Not possible: Because the codomain is smaller than the domain,

there is no injective h.
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(6) Let A,B be finite sets with |A| = |B|, and let f : A→ B. Show that f is
injective iff f is surjective.

Is this true for functions between infinite sets as well? Prove it or give
counterexamples for each direction.

Proof. injective⇒ surjective: Assume f is injective. Then |A| = |f(A)|.
Since f(A) ⊆ B and |A| = |B|, we get that f(A) = B. Hence f is
surjective.

surjective ⇒ injective: Assume f(A) = B. Then |f(A)| = |B| = |A|
yields that f is injective. If x 6= y in A, then f(x) 6= f(y) because
otherwise |f(A)| < |A|. �

For infinite sets, e.g. f : N → N, x 7→ x + 1 is injective but not
surjective; exercise (5a) gives a surjective function that is not injective.


