Math 2001-Assignment 12

Due November 20, 2020
(1) Complete the proof of the following:

Theorem. Let $\left\{A_{i}: i \in I\right\}$ be a partition of a set A. Then

$$
x \sim y \text { if } \exists i \in I: x, y \in A_{i}
$$

defines an equivalence relation on A with equivalence classes A_{i} for $i \in I$.
Proof: For reflexivity: Let $x \in A$. Since $A=$ \qquad by the definition of \qquad , we have $i \in I$ such that $x \in \ldots$. Hence $x \sim$ \qquad _.
For \qquad : Let $x, y \in A$. Assume $x \sim y$, that is, \qquad
for some $i \in I$. Then $y, x \in A_{i}$ and \qquad -
For transitivity: Let \qquad Assume $x \sim y$ and $y \sim z$. Then we
have $i \in I$ such that \qquad and $j \in I$ such that \qquad . Since \qquad $\in A_{i} \cap A_{j}$, we have \qquad by the definition of a partition.
Hence \qquad and $x \sim z$.
This completes the proof that \sim is \qquad .
Finally for every $x \in A$, the class $[x]_{\sim}=\ldots$ for the unique $i \in I$ such that $x \in$ \qquad .
(2) (a) Given finite sets A and B. How many different relations are there from A to B ?
(b) How many different equivalence relations are there on $A=\{1,2,3\}$? Describe them all by listing the different partitions of A.
(3) (a) Give the tables for addition and multiplication for \mathbb{Z}_{6}.
(b) Dividing by $[a]$ in \mathbb{Z}_{n} means solving an equation $[a] \cdot[x]=[1]$ for $[x]$. Solve $[8] \cdot[x]=[1]$ in \mathbb{Z}_{37}.
Hint: Use the Euclidean algorithm to solve $8 x \equiv 1 \bmod 37$.
(4) (a) Give domain, codomain, and range of $f: \mathbb{Z} \rightarrow \mathbb{N}, x \mapsto x^{2}+1$. What is $f(3)$?
(b) Is f one-to-one, onto, bijective?
(c) Determine $f(\{2 x: x \in \mathbb{Z}\})$ and $f^{-1}(\{1,2,3, \ldots, 10\})$.
(5) Give examples for
(a) a function $f: \mathbb{N} \rightarrow \mathbb{N}$ that is not injective but surjective;
(b) a function $g:\{1,2,3\} \rightarrow\{1,2\}$ that is neither injective nor surjective;
(c) a bijective function $h:\{1,2,3\} \rightarrow\{1,2\}$.
(6) Let A, B be finite sets with $|A|=|B|$, and let $f: A \rightarrow B$. Show that f is injective iff f is surjective.

Is this true for functions between infinite sets $A=B=\mathbb{N}$ as well? Prove it or give counterexamples for each direction.

