Math 2001 - Assignment 12

Due November 20, 2020

(1) Complete the proof of the following:

Theorem. Let $\{A_i : i \in I\}$ be a partition of a set A. Then

$$x \sim y$$
 if $\exists i \in I : x, y \in A_i$

defines an equivalence relation on A with equivalence classes A_i for $i \in I$. *Proof:* For reflexivity: Let $x \in A$. Since A = _____ by the definition of _____, we have $i \in I$ such that $x \in$ ____. Hence $x \sim$. $_$: Let $x, y \in A$. Assume $x \sim y$, that is, $_$ For for some $i \in I$. Then $y, x \in A_i$ and . For transitivity: Let _____. Assume $x \sim y$ and $y \sim z$. Then we have $i \in I$ such that ______ and $j \in I$ such that ______ Since _____ $\in A_i \cap A_j$, we have ______ by the definition of a partition. Hence _____ and $x \sim z$. This completes the proof that \sim is _____. Finally for every $x \in A$, the class $[x]_{\sim} =$ ______ for the unique $i \in I$ such that $x \in$ (2) (a) Given finite sets A and B. How many different relations are there from A to B? (b) How many different equivalence relations are there on $A = \{1, 2, 3\}$? Describe them all by listing the different partitions of A. (a) Give the tables for addition and multiplication for \mathbb{Z}_6 . (3)(b) Dividing by [a] in \mathbb{Z}_n means solving an equation $[a] \cdot [x] = [1]$ for [x]. Solve $[8] \cdot [x] = [1]$ in \mathbb{Z}_{37} . Hint: Use the Euclidean algorithm to solve $8x \equiv 1 \mod 37$. (4) (a) Give domain, codomain, and range of $f: \mathbb{Z} \to \mathbb{N}, x \mapsto x^2 + 1$. What is f(3)? (b) Is f one-to-one, onto, bijective? (c) Determine $f(\{2x : x \in \mathbb{Z}\})$ and $f^{-1}(\{1, 2, 3, \dots, 10\})$. (5) Give examples for (a) a function $f: \mathbb{N} \to \mathbb{N}$ that is not injective but surjective; (b) a function $g: \{1, 2, 3\} \rightarrow \{1, 2\}$ that is neither injective nor surjective; (c) a bijective function $h: \{1, 2, 3\} \rightarrow \{1, 2\}$. (6) Let A, B be finite sets with |A| = |B|, and let $f: A \to B$. Show that f is

(6) Let A, B be finite sets with |A| = |B|, and let $f: A \to B$. Show that f is injective iff f is surjective.

Is this true for functions between infinite sets $A = B = \mathbb{N}$ as well? Prove it or give counterexamples for each direction.