Math 2001 - Assignment 11

Due November 13, 2020
(1) Define a sequence of integers $a_{1}:=1, a_{2}:=1$ and

$$
a_{n}:=2 a_{n-1}+a_{n-2} \text { for } n \geq 3 .
$$

Prove that a_{n} is odd for all $n \in \mathbb{N}$ by strong induction.
Proof by strong induction on \mathbf{n} : Induction basis for $n=$ 1,2 : holds by definition of a_{1}, a_{2}.

Strong induction assumption: Assume a_{i} is odd for all $i \leq k$. Induction step: Show that a_{k+1} is odd.
By definition $a_{k+1}=2 a_{k}+a_{k-1}$. Since a_{k-1} is odd by the strong induction assumption, a_{k+1} is the sum of an even and an odd integer. Hence a_{k+1} is odd.
(2) Prove or disprove that the following relations are reflexive, symmetric, antisymmetric, transitive. Which are equivalences, which partial orders?
(a) \neq on \mathbb{Z}

Solution.

- not reflexive since e.g. it is not true that $0 \neq 0$
- symmetric since $\forall x, y \in \mathbb{Z}: x \neq y \Rightarrow y \neq x$
- not antisymmetric since e.g. $0 \neq 1$ and $1 \neq 0$ but it is not true that $0=1$
- not transitive since e.g. $0 \neq 1$ and $1 \neq 0$ but it is not true that $0 \neq 0$
- Hence \neq is neither an equivalence nor a partial order.
(b) \subseteq on the power set $P(A)$ of a set A

Solution.

- reflexive since $X \subseteq X$ for every set $X \in P(A)$.
- not symmetric if $A \neq \emptyset$. Then $\emptyset \subseteq A$ but $A \nsubseteq \emptyset$.
- antisymmetric since $X \subseteq Y$ and $Y \subseteq X$ implies $X=$ Y for all $X, Y \in P(A)$.
- transitive since $X \subseteq Y$ and $Y \subseteq Z$ implies $X \subseteq Z$ for all $X, Y, Z \in P(A)$.
- Hence \subseteq is not an equivalence but a partial order.
(3) Prove or disprove that the following relations are reflexive, symmetric, antisymmetric, transitive. Which are equivalences, which partial orders?
(a) | (divides) on \mathbb{N}

Solution.

- reflexive since $x \mid x$ for every $x \in \mathbb{N}$.
- not symmetric since e.g. $1 \mid 2$ but $2 \nless 1$.
- antisymmetric since $x \mid y$ and $y \mid x$ implies $x=y$ for all $x, y \in \mathbb{N}$.
- transitive since $x \mid y$ and $y \mid z$ implies $x \mid z$ for all $x, y, z \in$ \mathbb{N}.
- Hence \mid is not an equivalence but a partial order.
(b) $R=\{(x, y) \in \mathbb{R}:|x-y| \leq 1\}$

Solution.

- reflexive since $|x-x|=0 \leq 1$ for every $x \in \mathbb{R}$.
- symmetric since $|x-y|=|y-x|$ for all $x, y \in \mathbb{R}$.
- not antisymmetric since e.g. $|0-1| \leq 1$ and $|1-0| \leq$ 1 but $0 \neq 1$
- not transitive since e.g. $|0-1| \leq 1$ and $|1-2| \leq 1$ but $|0-2|>1$
- Hence R is neither an equivalence nor a partial order.
(4) List the equivalence classes for these equivalence relations:
(a) The relation \sim on subsets A, B of $\{1,2,3\}$ where $A \sim B$ if $|A|=|B|$.

Solution.

$[\emptyset]=\{\emptyset\} \ldots$ the class of sets of size 0
$[\{1\}]=\{\{1\},\{2\},\{3\}\} \ldots$ the class of sets of size 1 $[\{1,2\}]=\{\{1,2\},\{2,3\},\{1,3\}\}$.. class of sets of size 2 $[\{1,2,3\}]=\{\{1,2,3\}\} \ldots$ class of sets of size 3
(b) $R=\{(x, y) \in \mathbb{Z}:|x|=|y|\}$ on \mathbb{Z}

Solution. $[x]=\{-x, x\}$ for $x \in \mathbb{Z}$
(5) (a) Given finite sets A and B. How many different relations are there from A to B ?
(b) How many different equivalence relations are there on $A=$ $\{1,2,3\}$? Describe them all by listing the partitions of A.
Solution: Postponed for next week.
(6) Let \sim be an equivalence relation on a set A, let $a, b \in A$. Let $[a]$ denote the equivalence class of a modulo \sim. Show that

$$
a \nsim b \text { iff }[a] \cap[b]=\emptyset .
$$

Solution: \Rightarrow by contrapositive proof: Assume $[a] \cap[b] \neq \emptyset$, that is, we have $c \in[a] \cap[b]$. Then $c \sim a$ and $c \sim b$. By symmetry we get $a \sim c$ and by transitivity $a \sim b$.
$\Leftarrow:$ Assume $[a] \cap[b]=\emptyset$. Since $a \in[a]$, we then get $a \notin[b]=$ $\{x \in A: x \sim b\}$. Hence $a \nsim b$.

