Math 2001 - Assignment 11

Due November 13, 2020

(1) Define a sequence of integers $a_1 := 1, a_2 := 1$ and

$$a_n := 2a_{n-1} + a_{n-2}$$
 for $n \ge 3$.

Prove that a_n is odd for all $n \in \mathbb{N}$ by strong induction.

Proof by strong induction on n: Induction basis for n = 1, 2: holds by definition of a_1, a_2 .

Strong induction assumption: Assume a_i is odd for all $i \leq k$. Induction step: Show that a_{k+1} is odd.

By definition $a_{k+1} = 2a_k + a_{k-1}$. Since a_{k-1} is odd by the strong induction assumption, a_{k+1} is the sum of an even and an odd integer. Hence a_{k+1} is odd.

(2) Prove or disprove that the following relations are reflexive, symmetric, antisymmetric, transitive. Which are equivalences, which partial orders?

(a) \neq on \mathbb{Z}

Solution.

- not reflexive since e.g. it is not true that $0 \neq 0$
- symmetric since $\forall x, y \in \mathbb{Z} \colon x \neq y \Rightarrow y \neq x$
- not antisymmetric since e.g. 0 ≠ 1 and 1 ≠ 0 but it is not true that 0 = 1
- not transitive since e.g. $0 \neq 1$ and $1 \neq 0$ but it is not true that $0 \neq 0$
- Hence \neq is neither an equivalence nor a partial order.
- (b) \subseteq on the power set P(A) of a set A

Solution.

- reflexive since $X \subseteq X$ for every set $X \in P(A)$.
- not symmetric if $A \neq \emptyset$. Then $\emptyset \subseteq A$ but $A \not\subseteq \emptyset$.
- antisymmetric since $X \subseteq Y$ and $Y \subseteq X$ implies X = Y for all $X, Y \in P(A)$.
- transitive since $X \subseteq Y$ and $Y \subseteq Z$ implies $X \subseteq Z$ for all $X, Y, Z \in P(A)$.
- Hence \subseteq is not an equivalence but a partial order.
- (3) Prove or disprove that the following relations are reflexive, symmetric, antisymmetric, transitive. Which are equivalences, which partial orders?

(a) | (divides) on \mathbb{N}

Solution.

- reflexive since x|x for every $x \in \mathbb{N}$.
- not symmetric since e.g. 1|2 but 2/1.
- antisymmetric since x|y and y|x implies x = y for all $x, y \in \mathbb{N}$.
- transitive since x|y and y|z implies x|z for all $x, y, z \in \mathbb{N}$.
- Hence | is not an equivalence but a partial order.
- (b) $R = \{(x, y) \in \mathbb{R} : |x y| \le 1\}$

Solution.

- reflexive since $|x x| = 0 \le 1$ for every $x \in \mathbb{R}$.
- symmetric since |x y| = |y x| for all $x, y \in \mathbb{R}$.
- not antisymmetric since e.g. $|0-1| \le 1$ and $|1-0| \le 1$ but $0 \ne 1$
- not transitive since e.g. $|0 1| \le 1$ and $|1 2| \le 1$ but |0 - 2| > 1
- Hence R is neither an equivalence nor a partial order.
- (4) List the equivalence classes for these equivalence relations:
 - (a) The relation ~ on subsets A, B of $\{1, 2, 3\}$ where $A \sim B$ if |A| = |B|.

Solution.

- $[\emptyset] = \{\emptyset\} \dots$ the class of sets of size 0
- $[\{1\}] = \{\{1\}, \{2\}, \{3\}\} \dots$ the class of sets of size 1
- $[\{1,2\}] = \{\{1,2\},\{2,3\},\{1,3\}\}\$.. class of sets of size 2
- $[\{1, 2, 3\}] = \{\{1, 2, 3\}\} \dots$ class of sets of size 3
- (b) $R = \{(x, y) \in \mathbb{Z} : |x| = |y|\}$ on \mathbb{Z} Solution. $[x] = \{-x, x\}$ for $x \in \mathbb{Z}$
- (5) (a) Given finite sets A and B. How many different relations are there from A to B?
 - (b) How many different equivalence relations are there on $A = \{1, 2, 3\}$? Describe them all by listing the partitions of A. Solution: Postponed for next week.
- (6) Let \sim be an equivalence relation on a set A, let $a, b \in A$. Let [a] denote the equivalence class of a modulo \sim . Show that

$$a \not\sim b$$
 iff $[a] \cap [b] = \emptyset$.

Solution: \Rightarrow by contrapositive proof: Assume $[a] \cap [b] \neq \emptyset$, that is, we have $c \in [a] \cap [b]$. Then $c \sim a$ and $c \sim b$. By symmetry we get $a \sim c$ and by transitivity $a \sim b$.

 $\Leftarrow: \text{Assume } [a] \cap [b] = \emptyset. \text{ Since } a \in [a], \text{ we then get } a \notin [b] = \{x \in A : x \sim b\}. \text{ Hence } a \not\sim b. \square$