Math 2001 - Assignment 11

Due November 13, 2020
(1) Define a sequence of integers $a_{1}:=1, a_{2}:=1$ and

$$
a_{n}:=2 a_{n-1}+a_{n-2} \text { for } n \geq 3 .
$$

Prove that a_{n} is odd for all $n \in \mathbb{N}$ by strong induction.
(2) Prove or disprove that the following relations are reflexive, symmetric, antisymmetric, transitive. Which are equivalences, which partial orders?
(a) \neq on \mathbb{Z}
(b) \subseteq on the power set $P(A)$ of a set A
(3) Prove or disprove that the following relations are reflexive, symmetric, antisymmetric, transitive. Which are equivalences, which partial orders?
(a) \mid (divides) on \mathbb{N}
(b) $R=\{(x, y) \in \mathbb{R}:|x-y| \leq 1\}$
(4) List the equivalence classes for these equivalence relations:
(a) The relation \sim on subsets A, B of $\{1,2,3\}$ where $A \sim B$ if $|A|=|B|$.
(b) $R=\{(x, y) \in \mathbb{Z}:|x|=|y|\}$ on \mathbb{Z}
(5) (a) Given finite sets A and B. How many different relations are there from A to B ?
(b) How many different equivalence relations are there on $A=$ $\{1,2,3\}$? Describe them all by listing the different partitions of A.
(6) Let \sim be an equivalence relation on a set A, let $a, b \in A$. Let $[a]$ denote the equivalence class of a modulo \sim. Show that

$$
a \nsim b \text { iff }[a] \cap[b]=\emptyset .
$$

