Math 2001 - Assignment 11

Due November 13, 2020

(1) Define a sequence of integers $a_1 := 1, a_2 := 1$ and

 $a_n := 2a_{n-1} + a_{n-2}$ for $n \ge 3$.

Prove that a_n is odd for all $n \in \mathbb{N}$ by strong induction.

- (2) Prove or disprove that the following relations are reflexive, symmetric, antisymmetric, transitive. Which are equivalences, which partial orders?
 - (a) \neq on \mathbb{Z}
 - (b) \subseteq on the power set P(A) of a set A
- (3) Prove or disprove that the following relations are reflexive, symmetric, antisymmetric, transitive. Which are equivalences, which partial orders?
 - (a) | (divides) on \mathbb{N}
 - (b) $R = \{(x, y) \in \mathbb{R} : |x y| \le 1\}$
- (4) List the equivalence classes for these equivalence relations:
 - (a) The relation ~ on subsets A, B of $\{1, 2, 3\}$ where $A \sim B$ if |A| = |B|.
 - (b) $R = \{(x, y) \in \mathbb{Z} : |x| = |y|\}$ on \mathbb{Z}
- (5) (a) Given finite sets A and B. How many different relations are there from A to B?
 - (b) How many different equivalence relations are there on $A = \{1, 2, 3\}$? Describe them all by listing the different partitions of A.
- (6) Let \sim be an equivalence relation on a set A, let $a, b \in A$. Let [a] denote the equivalence class of a modulo \sim . Show that

$$a \not\sim b$$
 iff $[a] \cap [b] = \emptyset$.