
Math 2001 - Assignment 10

Due November 6, 2020

The first 4 problems are meant to be revision for the midterm. Do
them before Wednesday.

(1) (a) How many permutations of the alphabet a, . . . , z contain
the word “fish”?
Solution: Consider “fish” as one item together with the
remaining 22 letters to get 23! permutations.

(b) How many permutations of the alphabet do not contain
any of the words “fish”, “rat” or “bird”?
Solution:

permutations containing fish 23!

rat 24!

bird 23!

fish and rat 21!

fish and bird 0

bird and rat 0

So by inclusion-exclusion: 26! − 23! − 24! − 23! + 21! per-
mutations without “fish”, “rat” or “bird”.

(2) A regular poker card set has 4 suits and 13 cards for each suit.
(a) How many sets of 5 cards (out of 52) are there with 4 cards

of one kind?
Solution: 13 ∗ 48

(b) How many sets of 5 cards (out of 52) are there with all
cards of the same suit?
Solution: 4 ∗

(
13
5

)
(3) [1, Chapter 10, exercise 8] Show that for every n ∈ N:

1

2!
+
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4!
+ · · ·+ n

(n + 1)!
= 1− 1

(n + 1)!

Proof by induction on n:
Inductive base: For n=1, it is true that 1

2!
= 1− 1

2!
.

Induction assumption: For a fixed n we have
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Inductive step: Show

1

2!
+

2

3!
+

3

4!
+ · · ·+ n + 1

(n + 2)!
= 1− 1

(n + 2)!

Just start with the left hand side and simplify it using the in-
duction assumption:

1

2!
+

2

3!
+

3

4!
+ · · ·+ n + 1

(n + 2)!
= 1− 1

(n + 1)!
+

n + 1

(n + 2)!
by induction assumption

= 1− n + 2

(n + 2)!
+

n + 1

(n + 2)!

= 1− 1

(n + 2)!

Thus the statement is true for all n ∈ N. �

(4) Show by induction that for every natural number n ≥ 4:

2n ≥ n2

Proof by induction on n:
Induction basis for n = 4: 24 ≥ 42 holds.
Induction assumption: Assume 2k ≥ k2 holds for a particular

k ≥ 4.
Induction step: Show 2k+1 ≥ k + 12.
Note

2k+1 = 2 · 2k ≥ 2k2 by induction assumption

So we want to still show that

(1) 2k2 ≥ (k + 1)2.

To this end, look at the difference of both sides

2k2 − (k + 1)2 = k2 − 2k − 1

= (k − 1)2 − 2

≥ 32 − 2 because k ≥ 4.

In particular 2k2 − (k + 1)2 ≥ 0 which proves (1) and the in-
duction step. �

(5) Let p1, p2, . . . denote the list of all primes. Show that for inte-

gers a = Πi∈N peii , b = Πi∈N pfii with ei, fi ∈ N0 for i ∈ N,

lcm(a, b) = Πi∈N p
max(ei,fi)
i .
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Proof:
a) First note that Πi∈N p

max(ei,fi)
i is an integer multiple of a since

Πi∈N p
max(ei,fi)
i = a · Πi∈N p

max(ei,fi)−ei
i︸ ︷︷ ︸
∈Z

.

Similar Πi∈N p
max(ei,fi)
i is an integer multiple of b.

b) Next let m = Πi∈N p
gi)
i for gi ∈ N0 a common multiple of a

and b. Let i ∈ N. Then peii divides m and by the Fundamental
Theorem of Arithmetic, peii divides pgii . Hence ei ≤ gi. Similarly
fi ≤ gi. Together they imply that max(ei, fi) ≤ gi.

Thus for any common multiple m of a and b we have Πi∈N p
max(ei,fi)
i ≤

m and the former is lcm(a, b). �

(6) Show for all a, b ∈ N:

gcd(a, b) · lcm(a, b) = ab

Hint: Use the formula for gcd and lcm from class and the pre-
vious problem.

Proof: Let a =
∏

i∈N p
ei
i , b =

∏
i∈N p

fi
i . By a lemma from class

gcd(a, b) =
∏
i∈N

p
min(ei,fi)
i lcm(a, b) =

∏
i∈N

p
max(ei,fi)
i

Now ab =
∏

i∈N p
ei+fi
i and

gcd(a, b)lcm(a, b) =
∏
i∈N

p
min(ei,fi)+max(ei,fi)
i .

Both numbers on the right hand side are equal since for any
e, f ∈ N0

e + f = min(e, f) + max(e, f).

The proof of that is by case distinction:
Case 1, e ≤ f : Then min(e, f) = e,max(e, f) = f and min(e, f)+
max(e, f) = e + f .
Case 2, e > f : Similar. �
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