Math 2001 - Assignment 10

Due November 6, 2020
The first 4 problems are meant to be revision for the midterm. Do them before Wednesday.
(1) (a) How many permutations of the alphabet a, \ldots, z contain the word "fish"?
(b) How many permutations of the alphabet do not contain any of the words "fish", "rat" or "bird"?
(2) A regular poker card set has 4 suits and 13 cards for each suit.
(a) How many sets of 5 cards (out of 52) are there with 4 cards of one kind?
(b) How many sets of 5 cards (out of 52) are there with all cards of the same suit?
(3) $[1$, Chapter 10 , exercise 8$]$ Show that for every $n \in \mathbb{N}$:

$$
\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots+\frac{n}{(n+1)!}=1-\frac{1}{(n+1)!}
$$

(4) Show by induction that for every natural number $n \geq 4$:

$$
2^{n} \geq n^{2}
$$

(5) Let p_{1}, p_{2}, \ldots denote the list of all primes. Show that for integers $a=\Pi_{i \in \mathbb{N}} p_{i}^{e_{i}}, b=\Pi_{i \in \mathbb{N}} p_{i}^{f_{i}}$ with $e_{i}, f_{i} \in \mathbb{N}_{0}$ for $i \in \mathbb{N}$,

$$
\operatorname{lcm}(a, b)=\Pi_{i \in \mathbb{N}} p_{i}^{\max \left(e_{i}, f_{i}\right)}
$$

(6) Show for all $a, b \in \mathbb{N}$:

$$
\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b
$$

Hint: Use the formula for gcd and lcm from class and the previous problem.

References

[1] Richard Hammack. The Book of Proof. Creative Commons, 3rd edition, 2018. Available for free: http://www.people.vcu.edu/~rhammack/BookOfProof/

